Skip to main content
Log in

Neurobehavioral mutants identified in an ENU-mutagenesis project

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We report on a battery of behavioral screening tests that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU-mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and used a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open-field mutants (one displaying hyperlocomotion, the other hypolocomotion), four tail-suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning-and-memory mutant (displaying reduced response to the conditioned stimulus). These findings highlight the utility of a set of behavioral tasks used in a high-throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahituv N, Erven A, Fuchs H, Guy K, Ashery-Padan R, et al. (2004) An ENU-induced mutation in AP-2alpha leads to middle ear and ocular defects in Doarad mice. Mamm Genome 15(6):424–432

    Article  PubMed  CAS  Google Scholar 

  • Anderson KV (2000) Finding the genes that direct mammalian development: ENU mutagenesis in the mouse. Trends Genet 16(3):99–102

    Article  PubMed  CAS  Google Scholar 

  • Bacon Y, Ooi A, Kerr S, Shaw-Andrews L, Winchester L, et al. (2004) Screening for novel ENU-induced rhythm, entrainment and activity mutants. Genes Brain Behav 3(4):196–205

    Article  PubMed  CAS  Google Scholar 

  • Baker EJ, Galloway L, Jackson B, Schmoyer D, Snoddy J (2004) MuTrack: a genome analysis system for large-scale mutagenesis in the mouse. BMC Bioinformatics 5:11

    Article  PubMed  Google Scholar 

  • Balling R (2001) ENU mutagenesis: analyzing gene function in mice. Annu Rev Genomics Hum Genet 2:463–492

    Article  PubMed  CAS  Google Scholar 

  • Balling R, Brown S, Hrabe de Angelis M, Justice M, Nadeau J, et al. (2000) Great times for mouse genetics: getting ready for large-scale ENU-mutagenesis. Mamm Genome 11:471

    Article  Google Scholar 

  • Beddington R (1998) Mouse mutagenesis: from gene to phenotype and back again. Curr Biol 19:R840–842

    Article  Google Scholar 

  • Beier DR (2002) ENU mutagenesis: a work in progress. Physiol Genomics 11(3):111–113

    PubMed  Google Scholar 

  • Boccalon S, Scaggiante B, Perissin L (2006) Anxiety stress and nociceptive responses in mice. Life Sci 78(11):1225–1230

    Article  PubMed  CAS  Google Scholar 

  • Bolivar VJ, Caldarone BJ, Reilly AA, Flaherty L (2000) Habituation of activity in an open field: A survey of inbred strains and F1 hybrids. Behav Genet 30(4):285–293

    Article  PubMed  CAS  Google Scholar 

  • Bolivar VJ, Pooler O, Flaherty L (2001) Inbred strain variation in contextual and cued fear conditioning behavior. Mamm Genome 12(8):651–656

    Article  PubMed  CAS  Google Scholar 

  • Bothe GW, Bolivar VJ, Vedder MJ, Geistfeld JG (2005) Behavioral differences among fourteen inbred mouse strains commonly used as disease models. Comp Med 55(4):326–334

    PubMed  CAS  Google Scholar 

  • Brown SD, Balling R (2001) Systematic approaches to mouse mutagenesis. Curr Opin Genet Dev 11(3):268–273

    Article  PubMed  CAS  Google Scholar 

  • Brown SD, Nolan PM (1998) Mouse mutagenesis—systematic studies of mammalian gene function. Hum Mol Genet 7(10):1627–1633

    Article  PubMed  CAS  Google Scholar 

  • Buchner DA, Seburn KL, Frankel WN, Meisler MH, et al. (2004) Three ENU-induced neurological mutations in the pore loop of sodium channel Scn8a (Na(v)1.6) and a genetically linked retinal mutation, rd13. Mamm Genome 15(5):344–351

    Article  PubMed  CAS  Google Scholar 

  • Chesler EJ, Wilson SG, Lariviere WR, Rodriguez-Zas SL, Mogil JS (2002) Identification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large data archive. Neurosci Biobehav Rev 26(8):907–923

    Article  PubMed  Google Scholar 

  • Clark AT, Goldowitz D, Takahashi JS, Vitaterna MH, Siepka SM, et al. (2004) Implementing large-scale ENU mutagenesis screens in North America. Genetica 122(1):51–64

    Article  PubMed  CAS  Google Scholar 

  • Cook MN, Bolivar VJ, McFayden MP, Flaherty L (2002) Behavioral differences among 129 substrains: implications for knockout and transgenic mice. Behav Neurosci 116(4):600–611

    Article  PubMed  Google Scholar 

  • Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835(1):18–26

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Paylor R (1997) A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 31(3):197–211

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, et al. (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132(2):107–124

    Article  CAS  Google Scholar 

  • Crowley JJ, Jones MD, O’Leary OF, Lucki I (2004) Automated tests for measuring the effects of antidepressants in mice. Pharmacol Biochem Behav 78(2):269–274

    Article  PubMed  CAS  Google Scholar 

  • Crowley JJ, Blendy JA, Lucki I (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl) 183(2):257–264

    Article  CAS  Google Scholar 

  • Crowley JJ, Brodkin ES, Blendy JA, Berrettini WH, Lucki I (2006) Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. Neuropsychopharmacology 31(11):2433–2442

    Article  PubMed  CAS  Google Scholar 

  • Davis AP, Justice MJ (1998) An Oak Ridge legacy: the specific locus test and its role in mouse mutagenesis. Genetics 148(1):7–12

    PubMed  CAS  Google Scholar 

  • Goldowitz D, Frankel WN, Takahashi JS, Holtz-Vitaterna M, Bult C, et al. (2004) Large-scale mutagenesis of the mouse to understand the genetic bases of nervous system structure and function. Brain Res Mol Brain Res 132(2):105–115

    Article  PubMed  CAS  Google Scholar 

  • Guenet JL (2004) Chemical mutagenesis of the mouse genome: an overview. Genetica 122(1):9–24

    Article  PubMed  CAS  Google Scholar 

  • Hamre KM, Goldowitz D, Wilkinson S, Matthew DB (2007) Screening for ENU-induced mutations in mouse that result in aberrant ethanol-related phenotypes. Behav Neurosci

  • Hascoet M, Bourin M (1998) A new approach to the light/dark test procedure in mice. Pharmacol Biochem Behav 60(3):645–653

    Article  PubMed  CAS  Google Scholar 

  • Keays DA, Nolan PM (2003) N-ethyl-N-nitrosourea mouse mutants in the dissection of behavioural and psychiatric disorders. Eur J Pharmacol 480(1–3):205–217

    Article  PubMed  CAS  Google Scholar 

  • Kermany MH, Parker LL, Guo YK, Miller D, Swanson DJ, et al. (2006) Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen. Hear Res 220(1–2):76–86

    PubMed  Google Scholar 

  • Kile BT, Hentges KE, Clark AT, Nakamura H, Salinger AP, et al. (2003) Functional genetic analysis of mouse chromosome 11. Nature 425(6953):81–86

    Article  PubMed  CAS  Google Scholar 

  • Lariviere WR, Wilson SG, Laughlin TM, Kokayeff A, West EE, et al. (2002) Heritability of nociception. III. Genetic relationships among commonly used assays of nociception and hypersensitivity. Pain 97(1–2):75–86

    PubMed  Google Scholar 

  • Liu X, Gershenfeld HK (2001) Genetic differences in the tail-suspension test and its relationship to imipramine response among 11 inbred strains of mice. Biol Psychiatry 49(7):575–581

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Gershenfeld HK (2003) An exploratory factor analysis of the Tail Suspension Test in 12 inbred strains of mice and an F2 intercross. Brain Res Bull 60(3):223–231

    Article  PubMed  Google Scholar 

  • Liu X, Peprah D, Gershenfeld HK (2003) Tail-suspension induced hyperthermia: a new measure of stress reactivity. J Psychiatr Res 37(3):249–259

    Article  PubMed  Google Scholar 

  • Masuya H, Inoue M, Wada Y, Shimizu A, Nagano J, et al. (2005) Implementation of the modified-SHIRPA protocol for screening of dominant phenotypes in a large-scale ENU mutagenesis program. Mamm Genome 16(11):829–837

    Article  PubMed  Google Scholar 

  • McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R (2001) The use of behavioral test batteries: effects of training history. Physiol Behav 73(5):705–717

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Adhikari SM (1999) Hot and cold nociception are genetically correlated. J Neurosci 19(18):RC25

    PubMed  CAS  Google Scholar 

  • Mogil JS, Richards SP, Seifert F, Strasburg K, Zimmermann K, et al. (1997) Genetic sensitivity to hot-plate nociception in DBA/2J and C57BL/6J inbred mouse strains: possible sex-specific mediation by delta2-opioid receptors. Pain 70(2–3):267–277

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Miermeister F, O’Toole LA, Helms ML, Mitchell SR, et al. (2005) Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proc Natl Acad Sci U S A 102(36):12938–12943

    Article  PubMed  CAS  Google Scholar 

  • Moldin SO, Farmer ME, Chin HR, Battey JF Jr (2001) Trans-NIH neuroscience initiatives on mouse phenotyping and mutagenesis. Mamm Genome 12(8):575–581

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH (2000) Muta-genetics or muta-genomics: the feasibility of large-scale mutagenesis and phenotyping programs. Mamm Genome 11(7):603–607

    Article  PubMed  CAS  Google Scholar 

  • Nolan PM, Peters J, Vizor L, Strvens M, Washbourne R, et al. (2000) Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource. Mamm Genome 11(7):500–506

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TP, Frankel WN (2004) Moving forward with chemical mutagenesis in the mouse. J Physiol 554(Pt 1):13–21

    Article  PubMed  CAS  Google Scholar 

  • Ohl F, Keck ME (2003) Behavioural screening in mutagenised mice—in search for novel animal models of psychiatric disorders. Eur J Pharmacol 480(1–3):219–228

    Article  PubMed  CAS  Google Scholar 

  • Oliver PL, Davies KE (2005) Analysis of human neurological disorders using mutagenesis in the mouse. Clin Sci (Lond) 108(5):385–397

    Article  CAS  Google Scholar 

  • Paylor R, Spencer CM, Yuva-Paylor LA, Pieke Dahl S (2006) The use of behavioral test batteries, II: effect of test interval. Physiol Behav 87(1):95–102

    Article  PubMed  CAS  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33

    Article  PubMed  CAS  Google Scholar 

  • Rathkolb B, Fuchs E, Kolb HJ, Renner-Muller I, Krebs O, et al. (2000) Large-scale N-ethyl-N-nitrosourea mutagenesis of mice—from phenotypes to genes. Exp Physiol 85(6):635–644

    Article  PubMed  CAS  Google Scholar 

  • Reijmers LG, Coats JK, Pletcher MT, Wiltshire T, Tarantino LM, et al. (2006) A mutant mouse with a highly specific contextual fear-conditioning deficit found in an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Learn Mem 13(2):143–149

    Article  PubMed  CAS  Google Scholar 

  • Rinchik EM (2000) Developing genetic reagents to facilitate recovery, analysis, and maintenance of mouse mutations. Mamm Genome 11(7):489–499

    Article  PubMed  CAS  Google Scholar 

  • Rousseeuw P, Leroy A (1987) Robust Regression and Outlier Detection (New York: Wiley and Sons)

    Google Scholar 

  • Russell W, Kelly E, Hunsicker PR, Bangham JW, Maddux SC, et al. (1979) Specific-locus test shows ethylnitrosurea to be the most potent mutagen in the mouse. Proc Natl Acad Sci U S A 76:5818–5819

    Article  PubMed  CAS  Google Scholar 

  • Schimenti J, Bucan M (1998) Functional genomics in the mouse: phenotype-based mutagenesis screens. Genome Res 8(7):698–710

    PubMed  CAS  Google Scholar 

  • Swanson D, Hamre K, et al. (2003) Robust analysis of quantitative mutant phenotypes: implications for neuro-behavioral mutagenesis. Presented at the meeting of the Society for Neuroscience, New Orleans, LA, Program No. 864.13, 8–12 Nov 2003

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24(2):285–301

    PubMed  CAS  Google Scholar 

  • Tarantino LM, Gould TJ, Druhan JP, Bucan M (2000) Behavior and mutagenesis screens: the importance of baseline analysis of inbred strains. Mamm Genome 11(7):555–564

    Article  PubMed  CAS  Google Scholar 

  • Thaung C, West K, Clark BJ, McKie L, Morgan JE (2002) Novel ENU-induced eye mutations in the mouse: models for human eye disease. Hum Mol Genet 11(7):755–767

    Article  PubMed  CAS  Google Scholar 

  • Vaugeois JM, Passera G, Zuccaro F, Costentin J (1997) Individual differences in response to imipramine in the mouse tail suspension test. Psychopharmacology (Berl) 134(4):387–391

    Article  CAS  Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Komhauser JM, Lowrey PL, et al. (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264(5159):719–725

    Article  PubMed  CAS  Google Scholar 

  • Vitaterna MH, Pinto LH, Takahashi JS (2006) Large-scale mutagenesis and phenotypic screens for the nervous system and behavior in mice. Trends Neurosci 29(4):233–240

    Article  PubMed  CAS  Google Scholar 

  • Voikar V, Vasar E, Rauvala H (2004) Behavioral alterations induced by repeated testing in C57BL/6J and 129S2/Sv mice: implications for phenotyping screens. Genes Brain Behav 3(1):27–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIMH grant U01-MH61971 to DG with subcontract to MNC and 1 U01 AA013503 to DG. The authors gratefully acknowledge the important contributions of Gene Rinchik, Karen Goss, Ginger Shaw, Jason Spence, Jennifer Manrod, Eric Baker, Barbara Jackson, Leslie Galloway, Jody Cockroft, Andy Bush, Jay Snoddy, Lu Lu, Douglas Swanson, and all others involved at different levels and phases of this project. The authors also thank Drs. Howard Gershenfeld and Richard Paylor for their helpful advice and direction in the development and implementation of our behavioral screen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melloni N. Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, M.N., Dunning, J.P., Wiley, R.G. et al. Neurobehavioral mutants identified in an ENU-mutagenesis project. Mamm Genome 18, 559–572 (2007). https://doi.org/10.1007/s00335-007-9035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-007-9035-3

Keywords

Navigation