Skip to main content

Advertisement

Log in

Host genetic control of mosquito-borne Flavivirus infections

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Flaviviruses are arthropod-borne viruses, several of which represent emerging or re-emerging pathogens responsible for widespread infections with consequences ranging from asymptomatic seroconversion to severe clinical diseases and congenital developmental deficits. This variability is due to multiple factors including host genetic determinants, the role of which has been investigated in mouse models and human genetic studies. In this review, we provide an overview of the host genes and variants which modify susceptibility or resistance to major mosquito-borne flaviviruses infections in mice and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, Maringer K, Bernal-Rubio D, Shabman RS, Simon V, Rodriguez-Madoz JR, Mulder LC, Barber GN, Fernandez-Sesma A (2012) DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog 8:e1002934

    Article  PubMed  PubMed Central  Google Scholar 

  • Aliota MT, Caine EA, Walker EC, Larkin KE, Camacho E, Osorio JE (2016) Characterization of lethal zika virus infection in AG129 mice. PLoS Neglected Trop Dis 10:e0004682

    Article  CAS  Google Scholar 

  • Ashour J, Morrison J, Laurent-Rolle M, Belicha-Villanueva A, Plumlee CR, Bernal-Rubio D, Williams K, Harris E, Fernandez-Sesma A, Schindler C, García-Sastre A (2010) Mouse STAT2 restricts early dengue virus replication. Cell Host Microbe 8:410–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, Baric RS, Ferris MT, Frelinger JA, Heise M, Frieman MB, Gralinski LE, Bell TA, Didion JD, Hua K, Nehrenberg DL, Powell CL, Steigerwalt J, Xie Y, Kelada SN, Collins FS, Yang IV, Schwartz DA, Branstetter LA, Chesler EJ, Miller DR, Spence J, Liu EY, McMillan L, Sarkar A, Wang J, Wang W, Zhang Q, Broman KW, Korstanje R, Durrant C, Mott R, Iraqi FA, Pomp D, Threadgill D, de Villena FP, Churchill GA (2011) Genetic analysis of complex traits in the emerging collaborative cross. Genome Res 21:1213–1222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai F, Town T, Qian F, Wang P, Kamanaka M, Connolly TM, Gate D, Montgomery RR, Flavell RA, Fikrig E (2009) IL-10 signaling blockade controls murine West Nile virus infection. PLoS Pathog 5:e1000610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bardina SV, Brown JA, Michlmayr D, Hoffman KW, Sum J, Pletnev AG, Lira SA, Lim JK (2017) Chemokine receptor Ccr7 restricts fatal West Nile virus encephalitis. J Virol 91:e02409–e02416

    Article  PubMed  PubMed Central  Google Scholar 

  • Beltrame LM, Sell AM, Moliterno RA, Clementino SL, Cardozo DM, Dalalio MM, Fonzar UJ, Visentainer JE (2013) Influence of KIR genes and their HLA ligands in susceptibility to dengue in a population from southern Brazil. Tissue Antigens 82:397–404

    Article  PubMed  CAS  Google Scholar 

  • Best SM (2017) The many faces of the flavivirus NS5 protein in antagonism of type I interferon signaling. J Virol 91:e01970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bigham AW, Buckingham KJ, Husain S, Emond MJ, Bofferding KM, Gildersleeve H, Rutherford A, Astakhova NM, Perelygin AA, Busch MP, Murray KO, Sejvar JJ, Green S, Kriesel J, Brinton MA, Bamshad M (2011) Host genetic risk factors for West Nile virus infection and disease progression. PLoS ONE 6:e24745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boucherma R, Kridane-Miledi H, Bouziat R, Rasmussen M, Gatard T, Langa-Vives F, Lemercier B, Lim A, Berard M, Benmohamed L, Buus S, Rooke R, Lemonnier FA (2013) HLA-A*01:03, HLA-A*24:02, HLA-B*08:01, HLA-B*27:05, HLA-B*35:01, HLA-B*44:02, and HLA-C*07:01 monochain transgenic/H-2 class I null mice: novel versatile preclinical models of human T cell responses. J Immunol 191:583–593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brien JD, Daffis S, Lazear HM, Cho H, Suthar MS, Gale M Jr, Diamond MS (2011) Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8(+) T cell immune responses against West Nile virus infection. PLoS Pathog 7:e1002230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao B, Parnell LA, Diamond MS, Mysorekar IU (2017) Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med 214:2303–2313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlin AF, Plummer EM, Vizcarra EA, Sheets N, Joo Y, Tang W, Day J, Greenbaum J, Glass CK, Diamond MS, Shresta S (2017) An IRF-3-, IRF-5-, and IRF-7-independent pathway of dengue viral resistance utilizes IRF-1 to stimulate type I and II interferon responses. Cell Rep 21:1600–1612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cedillo-Barrón L, García-Cordero J, Shrivastava G, Carrillo-Halfon S, León-Juárez M, Bustos Arriaga J, León Valenzuela P, Gutiérrez Castañeda B (2018) The role of flaviviral proteins in the induction of innate immunity. In: Complexes JR, Harris D, Bhella (eds) Virus protein and nucleoprotein. Springer, Singapore, pp 407–442

    Chapter  Google Scholar 

  • Chan YK, Huang IC, Farzan M (2012) IFITM proteins restrict antibody-dependent enhancement of dengue virus infection. PLoS ONE 7:e34508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL (2008) CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453:672–676

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Shrestha B, Sen GC, Diamond MS (2013) A role for Ifit2 in restricting West Nile virus infection in the brain. J Virol 87:8363–8371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi UY, Kang JS, Hwang YS, Kim YJ (2015) Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp Mol Med 47:e144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E, Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC, Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D, Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL, Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu HC, Iraqi FA, Ivandic B, Jacob HJ, Jansen RC, Jepsen KJ, Johnson DK, Johnson TE, Kempermann G, Kendziorski C, Kotb M, Kooy RF, Llamas B, Lammert F, Lassalle JM, Lowenstein PR, Lu L, Lusis A, Manly KF, Marcucio R, Matthews D, Medrano JF, Miller DR, Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Morris DG, Mott R, Nadeau JH, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Page GP, Paigen B, Paigen K, Palmer AA, Pan HJ, Peltonen-Palotie L, Peirce J, Pomp D, Pravenec M, Prows DR, Qi Z, Reeves RH, Roder J, Rosen GD, Schadt EE, Schalkwyk LC, Seltzer Z, Shimomura K, Shou S, Sillanpaa MJ, Siracusa LD, Snoeck HW, Spearow JL, Svenson K, Tarantino LM, Threadgill D, Toth LA, Valdar W, de Villena FP, Warden C, Whatley S, Williams RW, Wiltshire T, Yi N, Zhang D, Zhang M, Zou F (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Colpitts TM, Conway MJ, Montgomery RR, Fikrig E (2012) West Nile virus: biology, transmission, and human infection. Clin Microbiol Rev 25:635–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Courtney SC, Di H, Stockman BM, Liu H, Scherbik SV, Brinton MA (2012) Identification of novel host cell binding partners of Oas1b, the protein conferring resistance to flavivirus-induced disease in mice. J Virol 86:7953–7963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cumberworth SL, Clark JJ, Kohl A, Donald CL (2017) Inhibition of type I interferon induction and signalling by mosquito-borne flaviviruses. Cell Microbiol 19:e12737

    Article  PubMed Central  CAS  Google Scholar 

  • Daffis S, Samuel MA, Keller BC, Gale M Jr, Diamond MS (2007) Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog 3:e106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS (2008a) Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82:10349–10358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daffis S, Samuel MA, Suthar MS, Keller BC, Gale M Jr, Diamond MS (2008b) Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J Virol 82:8465–8475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dang TN, Naka I, Sa-Ngasang A, Anantapreecha S, Chanama S, Wichukchinda N, Sawanpanyalert P, Patarapotikul J, Tsuchiya N, Ohashi J (2014) A replication study confirms the association of GWAS-identified SNPs at MICB and PLCE1 in Thai patients with dengue shock syndrome. BMC Med Genet 15:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darnell MB, Koprowski H, Lagerspetz K (1974) Genetically determined resistance to infection with group B arboviruses. I. Distribution of the resistance gene among various mouse populations and characteristics of gene expression in vivo. J Infect Dis 129:240–247

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Gaska JM, Douam F, Wei L, Kim D, Balev M, Heller B, Ploss A (2018) Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease. Proc Natl Acad Sci USA 2018:201803406

    Google Scholar 

  • Douam F, Soto Albrecht YE, Hrebikova G, Sadimin E, Davidson C, Kotenko SV, Ploss A (2017) Type III interferon-mediated signaling is critical for controlling live attenuated yellow fever virus infection in vivo. MBio 8:e12737

    Article  Google Scholar 

  • Dowall SD, Graham VA, Rayner E, Hunter L, Atkinson B, Pearson G, Dennis M, Hewson R (2017) Lineage-dependent differences in the disease progression of Zika virus infection in type-I interferon receptor knockout (A129) mice. PLoS Neglected Trop Dis 11:e0005704

    Article  Google Scholar 

  • Duan ZL, Liu HF, Huang X, Wang SN, Yang JL, Chen XY, Li DZ, Zhong XZ, Chen BK, Wen JS (2015) Identification of conserved and HLA-A*2402-restricted epitopes in dengue virus serotype 2. Virus Res 196:5–12

    Article  PubMed  CAS  Google Scholar 

  • Elbahesh H, Jha BK, Silverman RH, Scherbik SV, Brinton MA (2011) The Flvr-encoded murine oligoadenylate synthetase 1b (Oas1b) suppresses 2-5A synthesis in intact cells. Virology 409:262–270

    Article  PubMed  CAS  Google Scholar 

  • Elong Ngono A, Vizcarra EA, Tang WW, Sheets N, Joo Y, Kim K, Gorman MJ, Diamond MS, Shresta S (2017) Mapping and role of the CD8 + T cell response during primary Zika virus infection in mice. Cell Host Microbe 21:35–46

    Article  PubMed  CAS  Google Scholar 

  • Erickson AK, Pfeiffer JK (2015) Spectrum of disease outcomes in mice infected with YFV-17D. J Gen Virol 96:1328–1339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Errett JS, Suthar MS, McMillan A, Diamond MS, Gale M Jr (2013) The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J Virol 87:11416–11425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falcon-Lezama JA, Ramos C, Zuniga J, Juarez-Palma L, Rangel-Flores H, Garcia-Trejo AR, Acunha-Alonzo V, Granados J, Vargas-Alarcon G (2009) HLA class I and II polymorphisms in Mexican Mestizo patients with dengue fever. Acta Trop 112:193–197

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Mestre MT, Gendzekhadze K, Rivas-Vetencourt P, Layrisse Z (2004) TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue Antigens 64:469–472

    Article  PubMed  CAS  Google Scholar 

  • Fernando AN, Malavige GN, Perera KL, Premawansa S, Ogg GS, De Silva AD (2015) Polymorphisms of transporter associated with antigen presentation, tumor necrosis factor-alpha and interleukin-10 and their implications for protection and susceptibility to severe forms of dengue fever in patients in Sri Lanka. J Glob Infect Dis 7:157–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia G, Sierra B, Perez AB, Aguirre E, Rosado I, Gonzalez N, Izquierdo A, Pupo M, Danay Diaz DR, Sanchez L, Marcheco B, Hirayama K, Guzman MG (2010) Asymptomatic dengue infection in a Cuban population confirms the protective role of the RR variant of the FcgammaRIIa polymorphism. Am J Trop Med Hyg 82:1153–1156

    Article  PubMed  PubMed Central  Google Scholar 

  • Gizzi AS, Grove TL, Arnold JJ, Jose J, Jangra RK, Garforth SJ, Du Q, Cahill SM, Dulyaninova NG, Love JD, Chandran K, Bresnick AR, Cameron CE, Almo SC (2018) A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature 558:610–614

    Article  PubMed  CAS  Google Scholar 

  • Gorman MJ, Poddar S, Farzan M, Diamond MS (2016) The interferon-stimulated gene Ifitm3 restricts West Nile virus infection and pathogenesis. J Virol 90:8212–8225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J, Uccellini MB, Tripathi S, Morrison J, Yount BL, Dinnon KH 3rd, Ruckert C, Young MC, Zhu Z, Robertson SJ, McNally KL, Ye J, Cao B, Mysorekar IU, Ebel GD, Baric RS, Best SM, Artyomov MN, Garcia-Sastre A, Diamond MS (2018) An immunocompetent mouse model of Zika virus infection. Cell Host Microbe 23:672–685

    Article  PubMed  CAS  Google Scholar 

  • Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH, Diamond MS (2016) Zika virus infection damages the testes in mice. Nature 540:438–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graham JB, Thomas S, Swarts J, McMillan AA, Ferris MT, Suthar MS, Treuting PM, Ireton R, Gale M Jr, Lund JM (2015) Genetic diversity in the collaborative cross model recapitulates human West Nile virus disease outcomes. MBio 6:e00493–e00415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graham JB, Swarts JL, Wilkins C, Thomas S, Green R, Sekine A, Voss KM, Ireton RC, Mooney M, Choonoo G, Miller DR, Treuting PM, Pardo Manuel de Villena F, Ferris MT, McWeeney S, Gale M Jr, Lund JM (2016) A mouse model of chronic West Nile virus disease. PLoS Pathog 12:e1005996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, Schwarz MC, Sanchez-Seco MP, Evans MJ, Best SM, Garcia-Sastre A (2016) Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19:882–890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green R, Wilkins C, Thomas S, Sekine A, Hendrick DM, Voss K, Ireton RC, Mooney M, Go JT, Choonoo G, Jeng S, de Villena FP, Ferris MT, McWeeney S, Gale M Jr (2017) Oas1b-dependent immune transcriptional profiles of West Nile virus infection in the collaborative cross. G3 7:1665–1682

    PubMed  Google Scholar 

  • Guabiraba R, Marques RE, Besnard AG, Fagundes CT, Souza DG, Ryffel B, Teixeira MM (2010) Role of the chemokine receptors CCR1, CCR2 and CCR4 in the pathogenesis of experimental dengue infection in mice. PLoS ONE 5:e15680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsieh MF, Lai SL, Chen JP, Sung JM, Lin YL, Wu-Hsieh BA, Gerard C, Luster A, Liao F (2006) Both CXCR3 and CXCL10/IFN-inducible protein 10 are required for resistance to primary infection by dengue virus. J Immunol 177:1855–1863

    Article  PubMed  CAS  Google Scholar 

  • Ip PP, Liao F (2010) Resistance to dengue virus infection in mice is potentiated by CXCL10 and is independent of CXCL10-mediated leukocyte recruitment. J Immunol 184:5705–5714

    Article  PubMed  CAS  Google Scholar 

  • Jagger BW, Miner JJ, Cao B, Arora N, Smith AM, Kovacs A, Mysorekar IU, Coyne CB, Diamond MS (2017) Gestational stage and IFN-lambda signaling regulate ZIKV infection in utero. Cell Host Microbe 22:366–376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Julander JG, Siddharthan V (2017) Small-animal models of Zika virus. J Infect Dis 216:S919–S927

    Article  PubMed  Google Scholar 

  • Kamiyama N, Soma R, Hidano S, Watanabe K, Umekita H, Fukuda C, Noguchi K, Gendo Y, Ozaki T, Sonoda A, Sachi N, Runtuwene LR, Miura Y, Matsubara E, Tajima S, Takasaki T, Eshita Y, Kobayashi T (2017) Ribavirin inhibits Zika virus (ZIKV) replication in vitro and suppresses viremia in ZIKV-infected STAT1-deficient mice. Antiviral Res 146:1–11

    Article  PubMed  CAS  Google Scholar 

  • Khor CC, Chau TN, Pang J, Davila S, Long HT, Ong RT, Dunstan SJ, Wills B, Farrar J, Van Tram T, Gan TT, Binh NT, Tri le T, Lien le B, Tuan NM, Tham NT, Lanh MN, Nguyet NM, Hieu NT, Van NVCN, Thuy TT, Tan DE, Sakuntabhai A, Teo YY, Hibberd ML, Simmons CP (2011) Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1. Nat Genet 43:1139–1141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SB, Choi JY, Kim JH, Uyangaa E, Patil AM, Park SY, Lee JH, Kim K, Han YW, Eo SK (2015) Amelioration of Japanese encephalitis by blockage of 4-1BB signaling is coupled to divergent enhancement of type I/II IFN responses and Ly-6C(hi) monocyte differentiation. J Neuroinflammation 12:216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS (2005) Neuronal CXCL10 directs CD8 + T-cell recruitment and control of West Nile virus encephalitis. J Virol 79:11457–11466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Hou S, Airo AM, Limonta D, Mancinelli V, Branton W, Power C, Hobman TC (2016) Zika virus inhibits type-I interferon production and downstream signaling. EMBO Rep 12:1766–1775

    Google Scholar 

  • LaFleur C, Granados J, Vargas-Alarcon G, Ruiz-Morales J, Villarreal-Garza C, Higuera L, Hernandez-Pacheco G, Cutino-Moguel T, Rangel H, Figueroa R, Acosta M, Lazcano E, Ramos C (2002) HLA-DR antigen frequencies in Mexican patients with dengue virus infection: HLA-DR4 as a possible genetic resistance factor for dengue hemorrhagic fever. Hum Immunol 63:1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Lanteri MC, Kaidarova Z, Peterson T, Cate S, Custer B, Wu S, Agapova M, Law JP, Bielawny T, Plummer F, Tobler LH, Loeb M, Busch MP, Bramson J, Luo M, Norris PJ (2011) Association between HLA class I and class II alleles and the outcome of West Nile virus infection: an exploratory study. PLoS ONE 6:e22948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larena M, Lobigs M (2017) Partial dysfunction of STAT1 profoundly reduces host resistance to flaviviral infection. Virology 506:1–6

    Article  PubMed  CAS  Google Scholar 

  • Laurent-Rolle M, Boer EF, Lubick KJ, Wolfinbarger JB, Carmody AB, Rockx B, Liu W, Ashour J, Shupert WL, Holbrook MR, Barrett AD, Mason PW, Bloom ME, Garcia-Sastre A, Khromykh AA, Best SM (2010) The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol 84:3503–3515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurent-Rolle M, Morrison J, Rajsbaum R, Macleod JML, Pisanelli G, Pham A, Ayllon J, Miorin L, Martinez C, tenOever BR, Garcia-Sastre A (2014) The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon. Cell Host Microbe 16:314–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazear HM, Pinto AK, Vogt MR, Gale M Jr, Diamond MS (2011) Beta interferon controls West Nile virus infection and pathogenesis in mice. J Virol 85:7186–7194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazear HM, Pinto AK, Ramos HJ, Vick SC, Shrestha B, Suthar MS, Gale M Jr, Diamond MS (2013) Pattern recognition receptor MDA5 modulates CD8 + T cell-dependent clearance of West Nile virus from the central nervous system. J Virol 87:11401–11415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC, Doyle SE, Gale M Jr, Klein RS, Diamond MS (2015) Interferon-lambda restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci Transl Med 7:284ra259

    Article  CAS  Google Scholar 

  • Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS (2016) A mouse model of Zika virus pathogenesis. Cell Host Microbe 19:720–730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim JK, Lisco A, McDermott DH, Huynh L, Ward JM, Johnson B, Johnson H, Pape J, Foster GA, Krysztof D, Follmann D, Stramer SL, Margolis LB, Murphy PM (2009) Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog 5:e1000321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim JK, Obara CJ, Rivollier A, Pletnev AG, Kelsall BL, Murphy PM (2011) Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in West Nile virus encephalitis. J Immunol 186:471–478

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist R, Kurhade C, Gilthorpe JD, Overby AK (2018) Cell-type- and region-specific restriction of neurotropic flavivirus infection by viperin. J Neuroinflammation 15:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Loke H, Bethell DB, Phuong CX, Dung M, Schneider J, White NJ, Day NP, Farrar J, Hill AV (2001) Strong HLA class I–restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? J Infect Dis 184:1369–1373

    Article  PubMed  CAS  Google Scholar 

  • Lubick KJ, Robertson SJ, McNally KL, Freedman BA, Rasmussen AL, Taylor RT, Walts AD, Tsuruda S, Sakai M, Ishizuka M, Boer EF, Foster EC, Chiramel AI, Addison CB, Green R, Kastner DL, Katze MG, Holland SM, Forlino A, Freeman AF, Boehm M, Yoshii K, Best SM (2015) Flavivirus antagonism of type I interferon signaling reveals prolidase as a regulator of IFNAR1 surface expression. Cell Host Microbe 18:61–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucas TM, Richner JM, Diamond MS (2015) The interferon-stimulated gene Ifi27l2a restricts West Nile virus infection and pathogenesis in a cell-type- and region-specific manner. J Virol 90:2600–2615

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Damania B (2016) The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe 19:150–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malavige GN, Rostron T, Rohanachandra LT, Jayaratne SD, Fernando N, De Silva AD, Liyanage M, Ogg G (2011) HLA class I and class II associations in dengue viral infections in a Sri Lankan population. PLoS ONE 6:e20581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mashimo T, Lucas M, Simon-Chazottes D, Frenkiel MP, Montagutelli X, Ceccaldi PE, Deubel V, Guenet JL, Despres P (2002) A nonsense mutation in the gene encoding 2′-5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc Natl Acad Sci USA 99:11311–11316

    Article  PubMed  CAS  Google Scholar 

  • Mashimo T, Glaser P, Lucas M, Simon-Chazottes D, Ceccaldi PE, Montagutelli X, Despres P, Guenet JL (2003) Structural and functional genomics and evolutionary relationships in the cluster of genes encoding murine 2′,5′-oligoadenylate synthetases. Genomics 82:537–552

    Article  PubMed  CAS  Google Scholar 

  • Meier KC, Gardner CL, Khoretonenko MV, Klimstra WB, Ryman KD (2009) A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog 5:e1000614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miorin L, Maestre AM, Fernandez-Sesma A, Garcia-Sastre A (2017) Antagonism of type I interferon by flaviviruses. Biochem Biophys Res Commun 492:587–596

    Article  PubMed  CAS  Google Scholar 

  • Mohsin SN, Mahmood S, Amar A, Ghafoor F, Raza SM, Saleem M (2015) Association of FcgammaRIIa polymorphism with clinical outcome of dengue infection: first insight from Pakistan. Am J Trop Med Hyg 93:691–696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naiyer MM, Cassidy SA, Magri A, Cowton V, Chen K, Mansour S, Kranidioti H, Mbirbindi B, Rettman P, Harris S, Fanning LJ, Mulder A, Claas FHJ, Davidson AD, Patel AH, Purbhoo MA, Khakoo SI (2017) KIR2DS2 recognizes conserved peptides derived from viral helicases in the context of HLA-C. Sci Immunol 2:eaal5296

    Article  PubMed  Google Scholar 

  • Ng CT, Sullivan BM, Teijaro JR, Lee AM, Welch M, Rice S, Sheehan KC, Schreiber RD, Oldstone MB (2015) Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection. Cell Host Microbe 17:653–661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen TP, Kikuchi M, Vu TQ, Do QH, Tran TT, Vo DT, Ha MT, Vo VT, Cao TP, Tran VD, Oyama T, Morita K, Yasunami M, Hirayama K (2008) Protective and enhancing HLA alleles, HLA-DRB1*0901 and HLA-A*24, for severe forms of dengue virus infection, dengue hemorrhagic fever and dengue shock syndrome. PLoS Neglected Trop Dis 2:e304

    Article  CAS  Google Scholar 

  • Noecker CA, Amaya-Larios IY, Galeana-Hernandez M, Ramos-Castaneda J, Martinez-Vega RA (2014) Contrasting associations of polymorphisms in FcgammaRIIa and DC-SIGN with the clinical presentation of dengue infection in a Mexican population. Acta Trop 138:15–22

    Article  PubMed  CAS  Google Scholar 

  • Oliveira M, Lert-Itthiporn W, Cavadas B, Fernandes V, Chuansumrit A, Anunciacao O, Casademont I, Koeth F, Penova M, Tangnararatchakit K, Khor CC, Paul R, Malasit P, Matsuda F, Simon-Loriere E, Suriyaphol P, Pereira L, Sakuntabhai A (2018) Joint ancestry and association test indicate two distinct pathogenic pathways involved in classical dengue fever and dengue shock syndrome. PLoS Neglected Trop Dis 12:e0006202

    Article  Google Scholar 

  • Orozco S, Schmid MA, Parameswaran P, Lachica R, Henn MR, Beatty R, Harris E (2012) Characterization of a model of lethal dengue virus 2 infection in C57BL/6 mice deficient in the alpha/beta interferon receptor. J Gen Virol 93:2152–2157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panayiotou C, Lindqvist R, Kurhade C, Vonderstein K, Pasto J, Edlund K, Upadhyay AS, Overby AK (2018) Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation. J Virol 92:e00501

    PubMed  PubMed Central  Google Scholar 

  • Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B (1997) HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med 185:2043–2051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perelygin AA, Scherbik SV, Zhulin IB, Stockman BM, Li Y, Brinton MA (2002) Positional cloning of the murine flavivirus resistance gene. Proc Natl Acad Sci USA 99:9322–9327

    Article  PubMed  CAS  Google Scholar 

  • Perez AB, Sierra B, Garcia G, Aguirre E, Babel N, Alvarez M, Sanchez L, Valdes L, Volk HD, Guzman MG (2010) Tumor necrosis factor-alpha, transforming growth factor-beta1, and interleukin-10 gene polymorphisms: implication in protection or susceptibility to dengue hemorrhagic fever. Hum Immunol 71:1135–1140

    Article  PubMed  CAS  Google Scholar 

  • Perreira JM, Chin CR, Feeley EM, Brass AL (2013) IFITMs restrict the replication of multiple pathogenic viruses. J Mol Biol 425:4937–4955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry ST, Buck MD, Lada SM, Schindler C, Shresta S (2011) STAT2 mediates innate immunity to Dengue virus in the absence of STAT1 via the type I interferon receptor. PLoS Pathog 7:e1001297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinto AK, Daffis S, Brien JD, Gainey MD, Yokoyama WM, Sheehan KC, Murphy KM, Schreiber RD, Diamond MS (2011) A temporal role of type I interferon signaling in CD8 + T cell maturation during acute West Nile virus infection. PLoS Pathog 7:e1002407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prestwood TR, Morar MM, Zellweger RM, Miller R, May MM, Yauch LE, Lada SM, Shresta S (2012) Gamma interferon (IFN-gamma) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-alpha/beta receptor-deficient mice. J Virol 86:12561–12570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Recla JM, Robledo RF, Gatti DM, Bult CJ, Churchill GA, Chesler EJ (2014) Precise genetic mapping and integrative bioinformatics in diversity outbred mice reveals hydin as a novel pain gene. Mamm Genome 25:211–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rios JJ, Fleming JG, Bryant UK, Carter CN, Huber JC, Long MT, Spencer TE, Adelson DL (2010) OAS1 polymorphisms are associated with susceptibility to West Nile encephalitis in horses. PLoS ONE 5:e10537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivino L, Kumaran EA, Jovanovic V, Nadua K, Teo EW, Pang SW, Teo GH, Gan VC, Lye DC, Leo YS, Hanson BJ, Smith KG, Bertoletti A, Kemeny DM, MacAry PA (2013a) Differential targeting of viral components by CD4 + versus CD8 + T lymphocytes in dengue virus infection. J Virol 87:2693–2706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivino L, Tan AT, Chia A, Kumaran EA, Grotenbreg GM, MacAry PA, Bertoletti A (2013b) Defining CD8 + T cell determinants during human viral infection in populations of Asian ethnicity. J Immunol 191:4010–4019

    Article  PubMed  CAS  Google Scholar 

  • Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA, Auguste AJ, Langsjoen RM, Paessler S, Vasilakis N, Weaver SC (2016) Characterization of a novel murine model to study Zika virus. Am J Trop Med Hyg 94:1362–1369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakuntabhai A, Turbpaiboon C, Casademont I, Chuansumrit A, Lowhnoo T, Kajaste-Rudnitski A, Kalayanarooj SM, Tangnararatchakit K, Tangthawornchaikul N, Vasanawathana S, Chaiyaratana W, Yenchitsomanus PT, Suriyaphol P, Avirutnan P, Chokephaibulkit K, Matsuda F, Yoksan S, Jacob Y, Lathrop GM, Malasit P, Despres P, Julier C (2005) A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet 37:507–513

    Article  PubMed  CAS  Google Scholar 

  • Sam SS, Teoh BT, Chinna K, AbuBakar S (2015) High producing tumor necrosis factor alpha gene alleles in protection against severe manifestations of dengue. Int J Med Sci 12:177–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samuel MA, Diamond MS (2005) Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol 79:13350–13361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samuel MA, Whitby K, Keller BC, Marri A, Barchet W, Williams BR, Silverman RH, Gale M Jr, Diamond MS (2006) PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J Virol 80:7009–7019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sangster MY, Heliams DB, MacKenzie JS, Shellam GR (1993) Genetic studies of flavivirus resistance in inbred strains derived from wild mice: evidence for a new resistance allele at the flavivirus resistance locus (Flv). J Virol 67:340–347

    PubMed  PubMed Central  CAS  Google Scholar 

  • Santos AC, de Moura EL, Ferreira JM, Santos BR, Alves VM, de Farias KF, de Souza Figueiredo EV (2017) Meta-analysis of the relationship between TNF-alpha (-308G/A) and IL-10 (-819C/T) gene polymorphisms and susceptibility to dengue. Immunol Invest 46:201–220

    Article  PubMed  CAS  Google Scholar 

  • Sarri CA, Markantoni M, Stamatis C, Papa A, Tsakris A, Pervanidou D, Baka A, Politis C, Billinis C, Hadjichristodoulou C, Mamuris Z, Project M (2016) Genetic contribution of MHC class II genes in susceptibility to West Nile virus infection. PLoS ONE 11:e0165952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savidis G, Perreira JM, Portmann JM, Meraner P, Guo Z, Green S, Brass AL (2016) The IFITMs inhibit Zika virus replication. Cell Rep 15:2323–2330

    Article  PubMed  CAS  Google Scholar 

  • Scherbik SV, Paranjape JM, Stockman BM, Silverman RH, Brinton MA (2006) RNase L plays a role in the antiviral response to West Nile virus. J Virol 80:2987–2999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scherbik SV, Kluetzman K, Perelygin AA, Brinton MA (2007) Knock-in of the Oas1b(r) allele into a flavivirus-induced disease susceptible mouse generates the resistant phenotype. Virology 368:232–237

    Article  PubMed  CAS  Google Scholar 

  • Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, Garcia-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM (2014) Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:691–695

    Article  PubMed  CAS  Google Scholar 

  • Sheehan KC, Lai KS, Dunn GP, Bruce AT, Diamond MS, Heutel JD, Dungo-Arthur C, Carrero JA, White JM, Hertzog PJ, Schreiber RD (2006) Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection. J Interferon Cytokine Res 26:804–819

    Article  PubMed  CAS  Google Scholar 

  • Sheehan KC, Lazear HM, Diamond MS, Schreiber RD (2015) Selective blockade of interferon-alpha and -beta reveals their non-redundant functions in a mouse model of West Nile virus infection. PLoS ONE 10:e0128636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E (2004) Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78:2701–2710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E (2005) Critical roles for both STAT1- dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol 175:3946–3954

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Wang T, Samuel MA, Whitby K, Craft J, Fikrig E, Diamond MS (2006) Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol 80:5338–5348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sierra B, Alegre R, Perez AB, Garcia G, Sturn-Ramirez K, Obasanjo O, Aguirre E, Alvarez M, Rodriguez-Roche R, Valdes L, Kanki P, Guzman MG (2007) HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with antecedents of dengue 2 disease: advantages of the Cuban population for HLA studies of dengue virus infection. Hum Immunol 68:531–540

    Article  PubMed  CAS  Google Scholar 

  • Sierra B, Triska P, Soares P, Garcia G, Perez AB, Aguirre E, Oliveira M, Cavadas B, Regnault B, Alvarez M, Ruiz D, Samuels DC, Sakuntabhai A, Pereira L, Guzman MG (2017) OSBPL10, RXRA and lipid metabolism confer African-ancestry protection against dengue haemorrhagic fever in admixed Cubans. PLoS Pathog 13:e1006220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simon-Chazottes D, Frenkiel MP, Montagutelli X, Guenet JL, Despres P, Panthier JJ (2011) Transgenic expression of full-length 2′,5′-oligoadenylate synthetase 1b confers to BALB/c mice resistance against West Nile virus-induced encephalitis. Virology 417:147–153

    Article  PubMed  CAS  Google Scholar 

  • Simon-Loriere E, Lin RJ, Kalayanarooj SM, Chuansumrit A, Casademont I, Lin SY, Yu HP, Lert-Itthiporn W, Chaiyaratana W, Tangthawornchaikul N, Tangnararatchakit K, Vasanawathana S, Chang BL, Suriyaphol P, Yoksan S, Malasit P, Despres P, Paul R, Lin YL, Sakuntabhai A (2015) High anti-dengue virus activity of the OAS gene family is associated with increased severity of dengue. J Infect Dis 212:2011–2020

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Guest JM, Kanwar M, Boss J, Gao N, Juzych MS, Abrams GW, Yu FS, Kumar A (2017) Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes. JCI Insight 2:e92340

    Article  PubMed  PubMed Central  Google Scholar 

  • Stabell AC, Meyerson NR, Gullberg RC, Gilchrist AR, Webb KJ, Old WM, Perera R, Sawyer SL (2018) Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir. Elife 7:e31919

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephens HA, Klaythong R, Sirikong M, Vaughn DW, Green S, Kalayanarooj S, Endy TP, Libraty DH, Nisalak A, Innis BL, Rothman AL, Ennis FA, Chandanayingyong D (2002) HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens 60:309–318

    Article  PubMed  CAS  Google Scholar 

  • Sultana H, Neelakanta G, Foellmer HG, Montgomery RR, Anderson JF, Koski RA, Medzhitov RM, Fikrig E (2012) Semaphorin 7A contributes to West Nile virus pathogenesis through TGF-beta1/Smad6 signaling. J Immunol 189:3150–3158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suthar MS, Ma DY, Thomas S, Lund JM, Zhang N, Daffis S, Rudensky AY, Bevan MJ, Clark EA, Kaja MK, Diamond MS, Gale M Jr (2010) IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog 6:e1000757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suthar MS, Ramos HJ, Brassil MM, Netland J, Chappell CP, Blahnik G, McMillan A, Diamond MS, Clark EA, Bevan MJ, Gale M Jr (2012) The RIG-I-like receptor LGP2 controls CD8(+) T cell survival and fitness. Immunity 37:235–248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suthar MS, Diamond MS, Gale M Jr (2013) West Nile virus infection and immunity. Nat Rev Microbiol 11:115–128

    Article  PubMed  CAS  Google Scholar 

  • Szretter KJ, Daffis S, Patel J, Suthar MS, Klein RS, Gale M Jr, Diamond MS (2010) The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J Virol 84:12125–12138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szretter KJ, Brien JD, Thackray LB, Virgin HW, Cresswell P, Diamond MS (2011) The interferon-inducible gene viperin restricts West Nile virus pathogenesis. J Virol 85:11557–11566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thackray LB, Shrestha B, Richner JM, Miner JJ, Pinto AK, Lazear HM, Gale M Jr, Diamond MS (2014) Interferon regulatory factor 5-dependent immune responses in the draining lymph node protect against West Nile virus infection. J Virol 88:11007–11021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thackray LB, Handley SA, Gorman MJ, Poddar S, Bagadia P, Briseno CG, Theisen DJ, Tan Q, Hykes BL Jr, Lin H, Lucas TM, Desai C, Gordon JI, Murphy KM, Virgin HW, Diamond MS (2018) Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell reports 22:3440–3453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thibodeaux BA, Garbino NC, Liss NM, Piper J, Blair CD, Roehrig JT (2012) A small animal peripheral challenge model of yellow fever using interferon-receptor deficient mice and the 17D-204 vaccine strain. Vaccine 30:3180–3187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Town T, Bai F, Wang T, Kaplan AT, Qian F, Montgomery RR, Anderson JF, Flavell RA, Fikrig E (2009) Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30:242–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Townsley E, O’Connor G, Cosgrove C, Woda M, Co M, Thomas SJ, Kalayanarooj S, Yoon IK, Nisalak A, Srikiatkhachorn A, Green S, Stephens HA, Gostick E, Price DA, Carrington M, Alter G, McVicar DW, Rothman AL, Mathew A (2016) Interaction of a dengue virus NS1-derived peptide with the inhibitory receptor KIR3DL1 on natural killer cells. Clin Exp Immunol 183:419–430

    Article  PubMed  CAS  Google Scholar 

  • Tripathi S, Balasubramaniam VR, Brown JA, Mena I, Grant A, Bardina SV, Maringer K, Schwarz MC, Maestre AM, Sourisseau M, Albrecht RA, Krammer F, Evans MJ, Fernandez-Sesma A, Lim JK, Garcia-Sastre A (2017) A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog 13:e1006258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urosevic N, Mansfield JP, Mackenzie JS, Shellam GR (1995) Low resolution mapping around the flavivirus resistance locus (Flv) on mouse chromosome 5. Mamm Genome 6:454–458

    Article  PubMed  CAS  Google Scholar 

  • Valadao AL, Aguiar RS, de Arruda LB (2016) Interplay between inflammation and cellular stress triggered by flaviviridae viruses. Front Microbiol 7:1233

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Veen AG, Maillard PV, Schmidt JM, Lee SA, Deddouche-Grass S, Borg A, Kjaer S, Snijders AP, Reis ESC (2018) The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J 37:e97479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velasquez CV, Roman AD, Lan NT, Huy NT, Mercado ES, Espino FE, Perez ML, Huong VT, Thuy TT, Tham VD, Nga CT, Ha TT, Bilar JM, Bajaro JD, Baello BQ, Kikuchi M, Yasunami M, Morita K, Watanabe N, Karbwang J, Hirayama K (2015) Alpha tryptase allele of tryptase 1 (TPSAB1) gene associated with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) in Vietnam and Philippines. Hum Immunol 76:318–323

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Deubel V (2011) Mice with different susceptibility to Japanese encephalitis virus infection show selective neutralizing antibody response and myeloid cell infectivity. PLoS ONE 6:e24744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Chen RF, Liu JW, Lee IK, Lee CP, Kuo HC, Huang SK, Yang KD (2011) DC-SIGN (CD209) Promoter—336 A/G polymorphism is associated with dengue hemorrhagic fever and correlated to DC-SIGN expression and immune augmentation. PLoS Neglected Trop Dis 5:e934

    Article  CAS  Google Scholar 

  • Webster LT (1937) Inheritance of resistance of mice to enteric bacterial and neurotropic virus infections. J Exp Med 65:261–286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Webster LT, Clow AD (1936) Experimental encephalitis (St. Louis Type) in mice with high inborn resistance: a chronic subclinical infection. J Exp Med 63:827–845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiskopf D, Yauch LE, Angelo MA, John DV, Greenbaum JA, Sidney J, Kolla RV, De Silva AD, de Silva AM, Grey H, Peters B, Shresta S, Sette A (2011) Insights into HLA-restricted T cell responses in a novel mouse model of dengue virus infection point toward new implications for vaccine design. J Immunol 187:4268–4279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiskopf D, Angelo MA, de Azeredo EL, Sidney J, Greenbaum JA, Fernando AN, Broadwater A, Kolla RV, De Silva AD, de Silva AM, Mattia KA, Doranz BJ, Grey HM, Shresta S, Peters B, Sette A (2013) Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8 + T cells. Proc Natl Acad Sci USA 110:E2046–E2053

    Article  Google Scholar 

  • Weiskopf D, Bangs DJ, Sidney J, Kolla RV, De Silva AD, de Silva AM, Crotty S, Peters B, Sette A (2015) Dengue virus infection elicits highly polarized CX3CR1 + cytotoxic CD4 + T cells associated with protective immunity. Proc Natl Acad Sci USA 112:E4256–E4263

    Article  PubMed  CAS  Google Scholar 

  • Whitehorn J, Chau TN, Nguyet NM, Kien DT, Quyen NT, Trung DT, Pang J, Wills B, Van Vinh Chau N, Farrar J, Hibberd ML, Khor CC, Simmons CP (2013) Genetic variants of MICB and PLCE1 and associations with non-severe dengue. PLoS ONE 8:e59067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winkler CW, Peterson KE (2018) Using immunocompromised mice to identify mechanisms of Zika virus transmission and pathogenesis. Immunology 153:443–454

    Article  PubMed  CAS  Google Scholar 

  • WHO (1997) Dengue haemorrhagic fever: diagnosis, treatment, prevention and control. World Health Organization, Geneva

    Google Scholar 

  • WHO (2009) Dengue: guidelines for diagnosis, treatment, prevention and control. Spec Prog Res Train Trop Dis 2009:147

    Google Scholar 

  • Winkler CW, Myers LM, Woods TA, Messer RJ, Carmody AB, McNally KL, Scott DP, Hasenkrug KJ, Best SM, Peterson KE (2017) Adaptive immune responses to Zika virus are important for controlling virus infection and preventing infection in brain and testes. J Immunol 198:3526–3535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Liu Q, Zhou J, Xie W, Chen C, Wang Z, Yang H, Cui J (2017) Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discov 3:17006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xavier-Carvalho C, Gibson G, Brasil P, Ferreira RX, de Souza Santos R, Goncalves Cruz O, de Oliveira SA, de Sa Carvalho M, Pacheco AG, Kubelka CF, Moraes MO (2013) Single nucleotide polymorphisms in candidate genes and dengue severity in children: a case-control, functional and meta-analysis study. Infect Genet Evol 20:197–205

    Article  PubMed  CAS  Google Scholar 

  • Xavier-Carvalho C, Cardoso CC, de Souza Kehdy F, Pacheco AG, Moraes MO (2017a) Host genetics and dengue fever. Infect Genet Evol 56:99–110

    Article  PubMed  Google Scholar 

  • Xavier-Carvalho C, Cezar R, Freire NM, Vasconcelos CMM, Solorzano VEF, de Toledo-Pinto TG, Fialho LG, do Carmo RF, Vasconcelos LRS, Cordeiro MT, Baptista P, de Azeredo EL, da Cunha RV, de Souza LJ, Pacheco AG, Kubelka CF, Moura P, Moraes MO (2017b) Association of rs1285933 single nucleotide polymorphism in CLEC5A gene with dengue severity and its functional effects. Hum Immunol 78:649–656

    Article  PubMed  CAS  Google Scholar 

  • Yakub I, Lillibridge KM, Moran A, Gonzalez OY, Belmont J, Gibbs RA, Tweardy DJ (2005) Single nucleotide polymorphisms in genes for 2′-5′-oligoadenylate synthetase and RNase L inpatients hospitalized with West Nile virus infection. J Infect Dis 192:1741–1748

    Article  PubMed  CAS  Google Scholar 

  • Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, Lin YL (2012) Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog 8:e1002780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zellweger RM, Shresta S (2014) Mouse models to study dengue virus immunology and pathogenesis. Front Immunol 5:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang B, Chan YK, Lu B, Diamond MS, Klein RS (2008) CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. J Immunol 180:2641–2649

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Fernandez E, Dowd KA, Speer SD, Platt DJ, Gorman MJ, Govero J, Nelson CA, Pierson TC, Diamond MS, Fremont DH (2016) Structural basis of Zika virus-specific antibody protection. Cell 166:1016–1027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

C.M. was supported by a fellowship from the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence “Integrative Biology of Emerging Infectious Diseases” (grant n°ANR-10-LABX-62-IBEID). T.C. was supported by a HHMI-Wellcome International Research Scholarship and Institut Pasteur International Network G4 grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anavaj Sakuntabhai or Xavier Montagutelli.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manet, C., Roth, C., Tawfik, A. et al. Host genetic control of mosquito-borne Flavivirus infections. Mamm Genome 29, 384–407 (2018). https://doi.org/10.1007/s00335-018-9775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-018-9775-2

Keywords

Navigation