Skip to main content
Log in

Intra-colonial response to Acroporid “white syndrome” lesions in tabular Acropora spp. (Scleractinia)

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

‘White syndrome’ is considered to be the most prevalent coral disease on the Great Barrier Reef, characterised by rapid rates of lesion progression and high levels of colony mortality. This study investigated the production and translocation of photoassimilates towards white syndrome lesions (WSLs) and artificially inflicted lesions in healthy and diseased colonies of tabular Acropora spp. to determine the intra-colonial response to white syndrome using 14C labelling. Translocation of 14C labelled photoassimilates was preferentially orientated away from active WSLs, with minimal 14C activity observed in the lesion borders, whilst artificial lesions (ALs) created directly opposite WSL borders showed significantly higher 14C activity, suggesting active translocation of photoassimilates for tissue regeneration. Transport of photoassimilates in healthy coral colonies was preferentially oriented towards ALs with a higher perimeter–area ratio, although translocation towards WSL boundaries was minimal even though the lesion perimeter was often the width of the colony (>200 cm). We suggest that the preferential orientation of photoassimilates away from WSLs may represent a deliberate strategy by the colony to induce a ‘shutdown reaction’ in order to preserve intra-colonial resources within areas of the colony that are more likely to survive and recover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas HK, Smeda RJ, Gerwick BC, Shier WT (1999) Fumonisin B-1 from the fungus Fusarium moniliforme causes contact toxicity in plants: Evidence from studies with biosynthetically labeled toxin. J Nat Toxins 8:405–420

    PubMed  CAS  Google Scholar 

  • Antonius A (1977) Coral mortality in reefs: a problem for science and management. Proc 3rd Int Coral Reef Symp 2:618–623

    Google Scholar 

  • Antonius A (1981) Coral reef pathology—a review. Proc 4th Int Coral Reef Symp 2:3–6

    Google Scholar 

  • Antonius A (1995) Incidence and prevalence of coral diseases on coral reefs—What progress in research? Coral Reefs 14:224

    Article  Google Scholar 

  • Arnold TM, Schulz JC (2002) Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130:585–593

    Article  Google Scholar 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Article  Google Scholar 

  • Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol-Prog Ser 237:133–141

    Article  Google Scholar 

  • Bak RPM, Criens SR (1981) Survival after fragmentation of colonies of Madracis mirabilis, Acropora palmata and A. cervicornis (Scleractinia) and the subsequent impact of a coral disease. Proc 4th Int Coral Reef Symp 2:221–227

    Google Scholar 

  • Bak RPM, Steward-Van Es Y (1980) Regeneration of superficial damage in the scleractinian corals Agaricia agaricites f. purpurea and Porites astreoides. B Mar Sci 30:883–887

    Google Scholar 

  • Bak RPM, Brouns JJWM, Heys FML (1977) Regeneration and aspects of spatial competition in the scleractinian corals Agaricia agaricites and Montastrea annularis. Proc 3rd Int Coral Reef Symp 2:143–148

    Google Scholar 

  • Borger JL (2005) Dark spot syndrome: a scleractinian coral disease or a general stress response? Coral Reefs 24:139–144

    Article  Google Scholar 

  • Brederode FT, Linhorst HJM, Bol JF (1990) Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol 17:1117–1125

    Article  Google Scholar 

  • Bythell J, Pantos O, Richardson L (2004) White plague. White band, and other “white” diseases. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, Heidelberg, New York, pp 351–365

    Google Scholar 

  • Cameron AM, Endean R, De Vantier LM (1991) Predation on massive corals: are devastating population outbreaks of Acanthaster planci novel events? Mar Ecol-Prog Ser 75:251–258

    Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    Article  PubMed  CAS  Google Scholar 

  • Connell JH (1973) Population ecology of reef building corals. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol II. Academic, New York pp 205–245

  • Cote B, Vogel CS, Dawson JO (1989) Autumnal changes in tissue nitrogen of autumn olive, black alder and eastern cottonwood. Plant Soil Environ 118:23–32

    Article  CAS  Google Scholar 

  • Dean RA, Kuc J (1986) Induced systemic protection in cucumbers: the source of the “signal.” Physiol Plant Pathol 28:227–233

    Google Scholar 

  • Denner EBM, Smith GW, Busse HJ, Schumann P, Narzt T, Polson SW, Lubitz W, Richardson LL (2003) Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol 53:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Dustan P (1977) Vitality of reef coral populations off Key Largo, Florida: recruitment and mortality. Environ Geol 2:51–58

    Article  Google Scholar 

  • Dyrynda PEJ (1986) Defensive strategies of modular organisms. Philos T Roy Soc B 313:227–243

    Article  Google Scholar 

  • Fang L, Chen Y, Chen C (1989) Why does the white tip of stony coral grow so fast without zooxanthellae? Mar Biol 103:359–363

    Article  Google Scholar 

  • Fine M, Oren U, Loya Y (2002) Bleaching effect on regeneration and resource translocation in the coral Oculina patagonica. Mar Ecol-Prog Ser 234:119–125

    Article  Google Scholar 

  • Foster JS, McFall-Ngai MJ (1998) Induction of apoptosis by cooperative bacteria in the morphogenesis of host epithelial tissues. Dev Genes Evol 208:295–303

    Article  PubMed  CAS  Google Scholar 

  • Gladfelter EH (1983) Circulation of fluids in the gastrovascular system of the reef coral Acropora cervicornis. Biol Bull 165:619–636

    Article  Google Scholar 

  • Gladfelter EH, Michel G, Sanfelici A (1989) Metabolic gradients along a branch of the reef coral Acropora Palmata. B Mar Sci 44:1166–1173

    Google Scholar 

  • Hall VH (2001) The response of Acropora hyacinthus and Montipora tuberculosa to three different types of colony damage: scraping injury, tissue mortality and breakage. J Exp Mar Biol Ecol 264:209–223

    Article  Google Scholar 

  • Hardman ER, Meunier MS, Turner JR, Lynch TL, Taylor M, Klaus R (2004) The extent of coral bleaching in Rodrigues, 2002. J Nat Hist 38:3077–3089

    Article  Google Scholar 

  • He C, Drew MC, Morgan PW (1994) Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiol 105:861–865

    PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg O (2004) Coral reefs in a century of rapid environmental change. Symbiosis 37:1–31

    Google Scholar 

  • Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol-Prog Ser 7:207–226

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough J, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  PubMed  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Kramarsky-Winter E (2004) What can regeneration processes tell us about coral disease? In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, Heidelberg, New York, pp 217–230

    Google Scholar 

  • Lirman D (2000) Lesion regeneration in the branching coral Acropora palmata: effects of colonization, colony size, lesion size, and lesion shape. Mar Ecol-Prog Ser 197:209–215

    Article  Google Scholar 

  • Loya Y (1976) Skeletal regeneration in a Red Sea scleractinian coral population. Nature 261:490–491

    Article  PubMed  CAS  Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163

    Article  Google Scholar 

  • Meesters EH Bak RPM (1995) Age related deterioration of a physiological function in the branching coral Acropora palmata. Mar Ecol-Prog Ser 121:203–209

    Article  Google Scholar 

  • Meesters EH, Wesseling I, Bak RPM (1996) Partial mortality in three species of reef-building corals and the relation with colony morphology. B Mar Sci 58:838–852

    Google Scholar 

  • Meesters EH, Pauchli W, Bak RPM (1997) Predicting regeneration of physical damage on a reef-building coral by regeneration capacity and lesion shape. Mar Ecol-Prog Ser 146:91–99

    Article  Google Scholar 

  • Millard P, Neilsen GH (1989) The influence of nitrogen supply on the uptake and remobilization of stored N for the seasonal growth of apple trees. Ann Bot-London 63:301–309

    Google Scholar 

  • Mitchell DE, Madore MA (1992) Patterns of assimilate production and translocation in Muskmelon (Cucumis melo, L.) 2. Low-temperature effects. Plant Physiol 99:966–971

    PubMed  CAS  Google Scholar 

  • Molders W, Buchala A, Metraux JP (1996) Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants. Plant Physiol 112:787–792

    PubMed  Google Scholar 

  • Mullen KM, Peters EC, Harvell CD (2004) Coral resistance to disease. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, Heidelberg, New York, pp 377–399

    Google Scholar 

  • Muscatine L (1973) Nutrition of corals. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol II. Academic, New York pp 77–115

  • Nagelkerken I, Bak RPM (1998) Differential regeneration of artificial lesions among sympatric morphs of the Caribbean corals Porites astreoides and Stephanocoenia michelinii. Mar Ecol-Prog Ser 163:279–283

    Article  Google Scholar 

  • Nicotera P, Ankarkrona M, Bonfoco E, Orrenius S, Lipton SA (1996) Neuronal apoptosis versus necrosis induced by glutamate or free radicals. Apoptosis 1:5–10

    Article  CAS  Google Scholar 

  • Oren U, Rinkevich B, Loya Y (1997a) Oriented intra-colonial transport of C-14 labeled materials during coral regeneration. Mar Ecol-Prog Ser 161:117–122

    Article  Google Scholar 

  • Oren U, Benayahu Y, Loya Y (1997b) Effect of lesion size and shape on regeneration of the Red Sea coral Favia favus. Mar Ecol-Prog Ser 146:101–107

    Article  Google Scholar 

  • Oren U, Brickner I, Loya Y (1998) Prudent sessile feeding by the corallivore snail Coralliophila violacea on coral energy sinks. P Roy Soc B-Biol Sci 265:2043–2050

    Article  Google Scholar 

  • Oren U, Benayahu Y, Lubinevsky H, Loya Y (2001) Colony integration during regeneration in the stony coral Favia favus. Ecology 82:802–813

    Google Scholar 

  • Patterson MJ, Landolt ML (1979) Cellular reaction to injury in the anthozoan Anthopleura elegantissima. J Invertebr Path 33:189

    Article  Google Scholar 

  • Patterson KL, Porter JW, Ritchie KB, Polson SW, Mueller E, Peters EC, Santavy DL, Smith GW (2002) The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. P Natl Acad Sci USA 99:8725–8730

    Article  CAS  Google Scholar 

  • Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363

    Article  CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Peters EC (1984) A survey of cellular reactions to environmental stress and disease in Caribbean scleractinian corals. Helgolander Meeresun 37:113–137

    Article  Google Scholar 

  • Richardson LL (1998) Coral diseases: what is really known? Trends Ecol Evol 13:438–443

    Article  Google Scholar 

  • Richardson LL, Aronson R (2002) Infectious diseases of reef corals. Proc 9th Int Coral Reef Symp 1:1225–1230

    Google Scholar 

  • Richardson LL, Goldberg WM, Smith GW, Ritchie KB, Kuta KG, Halas JC, Feingold JS, Miller SL (1998) Florida’s mystery coral killer identified. Nature 392:557–558

    Article  CAS  Google Scholar 

  • Ritchie KB, Smith GW (1998) Type II white-band disease. Rev Biol Trop 46:199–203

    Google Scholar 

  • Rogers CS (1993) Hurricanes and coral reefs: the intermediate disturbance hypothesis revisited. Coral Reefs 12:127–137

    Article  Google Scholar 

  • Santavy DL, Peters EC (1997) Microbial pests: coral disease in the Western Carribean. Proc 4th Int Coral Reef Symp 1:607–612

    Google Scholar 

  • Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen enrichment and conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  • Sutherland KP, Porter JW, Torres C (2004) Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar Ecol-Prog Ser 266:273–302

    Article  Google Scholar 

  • Syntichaki P, Tavernarakis N (2002) Death by necrosis: uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep 3:604 –609

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL (1977) Intra-colonial transport of organic compounds and calcium in some Atlantic reef corals. Proc 3rd Int Coral Reef Symp 1:431–436

    CAS  Google Scholar 

  • Teng YW, Tanabe K, Tamura F, Itai A (1999) Effects of water stress on fruit growth and the partitioning of C-13-assimilates in ‘Nijisseiki’ pear trees. J Jpn Soc Hortic Sci 68:1071–1078

    Article  CAS  Google Scholar 

  • van Veghel MLJ, Bak RPM (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. 3. Reproduction in damaged and regenerating colonies. Mar Ecol-Prog Ser 109:229–233

    Article  Google Scholar 

  • van Woesik R (1998) Lesion healing on massive Porites spp. corals. Mar Ecol-Prog Ser 164:213–220

    Article  Google Scholar 

  • Vaux D, Strasser A (1996) The molecular biology of apoptosis. P Natl Acad Sci USA 93:2239–2244

    Article  CAS  Google Scholar 

  • Veron JEN (1986) Corals of Australia and the Indo-Pacific. Angus and Robertson, Sydney, p 644

    Google Scholar 

  • Wahle CM (1983) Regeneration of injuries among Jamaican gorgonians: the role of colony physiology and environment. Biol Bull 165:778–790

    Article  Google Scholar 

  • Wang WQ, Wang M, Lin P (2003) Seasonal changes in element contents in mangrove element retranslocation during leaf senescene. Plant Soil 252:187–193

    Article  CAS  Google Scholar 

  • Ward S (1995) The effect of damage on the growth, reproduction and storage of lipids in the scleractinian coral Pocillopora damicornis (Linnaeus). J Exp Mar Biol Ecol 187:193–206

    Article  CAS  Google Scholar 

  • Weil E (2004) Coral reef diseases in the wider Caribbean. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, Heidelberg, New York, pp 35–68

    Google Scholar 

  • Wells JW (1973) New and old scleractinian corals from Jamaica. B Mar Sci 23:16–58

    Google Scholar 

  • Wilkinson CR (2004) Status of coral reefs of the world 2004. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Willis BL, Page CA, Dinsdale EA (2004) Coral disease on the Great Barrier Reef. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, Heidelberg, New York, pp 69–104

    Google Scholar 

Download references

Acknowlegements

The authors are grateful to the World Bank GEF Coral Reef Targeted Research Program (http://www.gefcoral.org) and the ARC Discovery program for support during this study. They are also grateful for the support provided by the staff of Heron Island Research Station as well as the members of the Marine Animal Plant Symbiosis Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hoegh-Guldberg.

Additional information

Communicated by Ecology Editor P.J. Mumby

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roff, G., Hoegh-Guldberg, O. & Fine, M. Intra-colonial response to Acroporid “white syndrome” lesions in tabular Acropora spp. (Scleractinia). Coral Reefs 25, 255–264 (2006). https://doi.org/10.1007/s00338-006-0099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-006-0099-4

Keywords

Navigation