Skip to main content

Advertisement

Log in

Diel rhythmicity of lipid-body formation in a coral-Symbiodinium endosymbiosis

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The biogenesis of intracellular lipid bodies (LBs) is dependent upon the symbiotic status between host corals and their intracellular dinoflagellates (genus Symbiodinium), though aside from this observation, little is known about LB behavior and function in this globally important endosymbiosis. The present research aimed to understand how LB formation and density are regulated in the gastrodermal tissue layer of the reef-building coral Euphyllia glabrescens. After tissue fixation and labeling with osmium tetroxide, LB distribution and density were quantified by imaging analysis of serial cryo-sections, and a diel rhythmicity was observed; the onset of solar irradiation at sunrise initiated an increase in LB density and size, which peaked at sunset. Both LB density and size then decreased to basal levels at night. On a seasonal timescale, LB density was found to be significantly positively correlated with seasonal irradiation, with highest densities found in the summer and lowest in the fall. In terms of LB lipid composition, only the concentration of wax esters, and not triglycerides or sterols, exhibited diel variability. This suggests that the metabolism and accumulation of lipids in LBs is at least partially light dependent. Ultrastructural examinations revealed that the LB wax ester concentration correlated with the number of electron-transparent inclusion bodies. Finally, there was a directional redistribution of the LB population across the gastroderm over the diel cycle. Collectively, these data reveal that coral gastrodermal LBs vary in composition and intracellular location over diel cycles, features which may shed light on their function within this coral–dinoflagellate mutualism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abe A (1998) Modification of the Coomassie brilliant blue staining method for sphingolipid synthesis inhibitors on silica gel thin-layer plate. Anal Biochem 258:149–150

    Article  PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Cermelli S, Guo Y, Gross SP, Welte MA (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16:1783–1795

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Fujita A, Ohsaki Y, Suzuki M, Shinohara Y, Fujimoto T (2009) Quantitative electron microscopy shows uniform incorporation of triglycerides into existing lipid droplets. Histochem Cell Biol 132:281–291

    Article  PubMed  CAS  Google Scholar 

  • Crossland CJ, Barnes DJ, Borowitzka MA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol 60:81–90

    Article  CAS  Google Scholar 

  • D’Avila H, Melo RCN, Parreira GG, Werneck-Barroso E, Castro-Favia-Neto HC, Bozza PT (2006) Mycobacteriium bovis Bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol 176:3087–3097

    PubMed  Google Scholar 

  • DiDonato D, Brasaemle DL (2003) Fixation methods for the study of lipid droplets by immunofluorescence microscopy. J Histochem Cytochem 51:773–780

    Article  PubMed  CAS  Google Scholar 

  • Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101

    Article  PubMed  CAS  Google Scholar 

  • Fowler SD, Greenspan P (1985) Application of nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red o. J Histochem Cytochem 33:833–836

    Article  PubMed  CAS  Google Scholar 

  • Fuchs B, Schiller J, Sub R, Schurenberg M, Suckau D (2007) A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem 389:827–834

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto Y, Itabe H, Sakai J, Makita M, Noda J, Mori M, Higashi Y, Kojima S, Takano T (2004) Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta 1644:47–59

    Article  PubMed  CAS  Google Scholar 

  • Ishie T, Tani A, Takabe K, Kawasaki K, Sakai Y, Kato N (2002) Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microbiol 68:1192–1195

    Article  Google Scholar 

  • Kellogg RB, Patton JS (1983) Lipid droplets: medium of energy exchange in the symbiotic anemone Condylactis gigantea, a model coral polyp. Mar Biol 75:137–149

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Pérez AL, Reyes-Bonilla H, Warner ME (2010) Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc R Soc B 277:2925–2934

    Article  PubMed  Google Scholar 

  • Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RGW (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279:3787–3792

    Article  PubMed  CAS  Google Scholar 

  • Luo YJ, Wang LH, Chen WNU, Peng SE, Tzen JTC, Hsiao YY, Huang HJ, Fang LS, Chen CS (2009) Ratiometric imaging of gastrodermal lipid bodies in coral-dinoflagellate endosymbiosis. Coral Reefs 28:289–301

    Article  Google Scholar 

  • Mastro R, Hall M (1999) Protein delipidation and precipitation by tri-n-butylphosphate, acetone, and methanol treatment for isoelectric focusing and two dimensional gel electrophoresis. Anal Biochem 273:313–315

    Article  PubMed  CAS  Google Scholar 

  • Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

    Article  PubMed  CAS  Google Scholar 

  • Muscatine L, Gates RD, LaFontaine I (1994) Do symbiotic dinoflagellates secrete lipid droplets? Limnol Oceanogr 39:925–929

    Article  CAS  Google Scholar 

  • Ohsaki Y, Cheng J, Suzuki M, Shinohara Y, Fujita A, Fujimoto T (2009) Biogenesis of cytoplasmic lipid droplets: from the lipid ester globule in the membrane to the visible structure. Biochim Biophys Acta 1791:399–407

    PubMed  CAS  Google Scholar 

  • Ohsaki Y, Shinohara Y, Suzuki M, Fujimoto T (2010) A pitfall in using BODIPY dyes to label lipid droplets for fluorescence microscopy. Histochem Cell Biol 133:477–480

    Article  PubMed  CAS  Google Scholar 

  • Oku H, Yamashiro H, Onaga K (2003) Lipid biosynthesis from [14C]-glucose in the coral Montipora digitata. Fish Sci 69:625–631

    Article  CAS  Google Scholar 

  • Olofsson SO, Bostrom P, Andersson L, Rutberg M, Perman J, Boren J (2009) Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta 1791:448–458

    PubMed  CAS  Google Scholar 

  • Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118:2601–2611

    Article  PubMed  CAS  Google Scholar 

  • Patton JS, Burris JE (1983) Lipid synthesis and exclusion by freshly isolated zooxanthellae (symbiotic algae). Mar Biol 75:131–136

    Article  CAS  Google Scholar 

  • Patton JS, Battey JF, Rigler MW, Porter JW, Black CC, Burris JE (1983) A comparison of the metabolism of bicarbonate 14C and acetate 1–14C and the variability of species lipid compositions in reef corals. Mar Biol 75:121–130

    Article  CAS  Google Scholar 

  • Peng SE, Luo YJ, Huang HJ, Lee IT, Hou LS, Chen WNU, Fang LS, Chen CS (2008) Isolation of tissue layers in hermatypic corals by N-acetylcysteine: morphological and proteomic examinations. Coral Reefs 27:133–142

    Article  Google Scholar 

  • Peng SE, Wang YB, Wang LH, Chen WNU, Lu CY, Fang LS, Chen CS (2010) Proteomic analysis of symbiosome membranes in cnidaria-dinoflagellate endosymbiosis. Proteomics 10:1002–1016

    Article  PubMed  CAS  Google Scholar 

  • Peng SE, Chen WNU, Chen HK, Lu CY, Mayfield AB, Fang LS, Chen CS (2011) Lipid bodies in coral-dinoflagellate endosymbiosis: proteomic and ultrastructural studies. Proteomics 17:3540–3555

    Article  Google Scholar 

  • Prattes S, Hörl G, Hammer A, Blaschitz A, Graier WF, Sattler W, Zechner R, Steyrer E (2000) Intracellular distribution and mobilization of unesterified cholesterol in adipocytes: triglyceride droplets are surrounded by cholesterol-rich ER-like surface layer structures. J Cell Sci 113:2977–2987

    PubMed  CAS  Google Scholar 

  • Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ (2006) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119:4215–4224

    Article  PubMed  CAS  Google Scholar 

  • Tauchi-Sato K, Ozeki KS, Honjou T, Taguchi R, Fujimoto T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277:44507–44512

    Article  PubMed  CAS  Google Scholar 

  • Umlauf E, Császár E, Moertelmaier M, Schuetz GJ, Parton RG, Prohaska R (2004) Association of stomatin with lipid bodies. J Biol Chem 279:23699–23709

    Article  PubMed  CAS  Google Scholar 

  • Vandermeulen JH (1974) Studies on reef corals, II. Fine structure of planktonic planula larva of Pocillopora damicornis, with emphasis on the aboral epidermis. Mar Biol 27:239–249

    Article  Google Scholar 

  • Wan HC, Melo RCN, Jin Z, Dvorak AM, Weller PF (2007) Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J 21:167–178

    Article  PubMed  CAS  Google Scholar 

  • Weis VM, Allemand D (2009) What determines coral health? Science 324:1153–1155

    Article  PubMed  CAS  Google Scholar 

  • Weis VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, Pringle JR (2008) Cell biology in model systems as the key to understanding corals. Trends Ecol Evol 23:369–376

    Article  PubMed  Google Scholar 

  • Welte MA (2007) Proteins under new management: lipid droplets delivery. Trends Cell Biol 17:363–369

    Article  PubMed  CAS  Google Scholar 

  • Whitehead LF, Douglas AE (2003) Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. J Exp Biol 206:3149–3157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Council of Taiwan (NSC 98-2311-B-291-001-MY3) and by intramural funding from NMMBA (99200311). ABM was supported by an international postdoctoral research fellowship (OSE-0852960) from the National Science Foundation of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-S. Chen.

Additional information

Communicated by Biology Editor Dr. Mark Warner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WN.U., Kang, HJ., Weis, V.M. et al. Diel rhythmicity of lipid-body formation in a coral-Symbiodinium endosymbiosis. Coral Reefs 31, 521–534 (2012). https://doi.org/10.1007/s00338-011-0868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0868-6

Keywords

Navigation