Skip to main content
Log in

Imbalance between oxygen photoreduction and antioxidant capacities in Symbiodinium cells exposed to combined heat and high light stress

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

During the last decades, coral reefs have been affected by several large-scale bleaching events, and such phenomena are expected to increase in frequency and severity in the future, thus compromising their survival. High sea surface temperature accompanied by high levels of solar irradiance has been found to be responsible for the induction of oxidative stress ultimately ending with the disruption of the symbiosis between cnidarians and Symbiodinium. For two decades, many studies have pointed to the water–water cycle (WWC) as being one of the primary mediators of this phenomenon, but the impacts of environmental stress on the O2 reduction by PSI and the associated reactive oxygen species (ROS)-detoxifying enzymes remain to be determined. In this study, we analyzed the impacts of acute thermal and light stress on the WWC in the model Symbiodinium strain A1. We observed that the high light treatment at 26 °C resulted in the up-regulation of superoxide dismutase, ascorbate peroxidase, and glutathione reductase activities and an increased production of ROS with no significant change in O2-dependent electron transport. Under high light and at 33 °C, O2-dependent electron transport was significantly increased relative to total electron transport. This increase was concomitant with a twofold increase in ROS generation compared with the treatment at 26 °C, while enzymes involved in the WWC were largely inactivated. These data show for the first time that combined heat and light stress inactivate antioxidant capacities of the WWC and suggests that its photoprotective functions are overwhelmed under these conditions. This study also indicates that cnidarians may be more prone to bleach if they harbor Symbiodinium cells having a highly active Mehler-type electron transport, unless they are able to quickly up-regulate their antioxidant capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos T R Soc B 355:1419–1431

    Article  CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc Lond B Biol Sci 355:1433–1446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banaszak AT, Santos MG, LaJeunesse TC, Lesser MP (2006) The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J Exp Mar Biol Ecol 337:131–146

    Article  CAS  Google Scholar 

  • Bhagooli R (2013) Inhibition of Calvin-Benson cycle suppresses the repair of photosystem II in Symbiodinium: implications for coral bleaching. Hydrobiologia 714:183–190

    Article  CAS  Google Scholar 

  • Bouchard JN, Yamasaki H (2009) Implication of nitric oxide in the heat-stress-induced cell death of the symbiotic alga Symbiodinium microadriaticum. Mar Biol 156:2209–2220

    Article  CAS  Google Scholar 

  • Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ (2011) Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol Oceanogr 56:927–938

    Article  CAS  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  • Brown BE, Dunne RP, Warner ME, Ambarsari I, Fitt WK, Gibb SW, Cummings DG (2000) Damage and recovery of photosystem II during a manipulative field experiment on solar bleaching in the coral Goniastrea aspera. Mar Ecol Prog Ser 195:117–124

    Article  Google Scholar 

  • Buxton L, Takahashi S, Hill R, Ralph PJ (2012) Variability in the primary site of photosynthetic damage in Symbiodinium sp. (Dinophyceae) exposed to thermal stress. J Phycol 48:117–126

    Article  CAS  Google Scholar 

  • Cardol P, Forti G, Finazzi G (2011) Regulation of electron transport in microalgae. Biochim Biophys Acta 1807:912–918

    Article  CAS  PubMed  Google Scholar 

  • Casano LM, Gómez LD, Lascano HR, González CA, Trippi VS (1997) Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol 38:433–440

    Article  CAS  PubMed  Google Scholar 

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Douglas AE (2003) Coral bleaching—how and why? Mar Pollut Bul 46:385–392

    Article  CAS  Google Scholar 

  • Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar Biotechnol 2:533–544

    Article  CAS  PubMed  Google Scholar 

  • Dunn SR, Thomason JC, Le Tissier MDA, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11:1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Flores-Ramirez LA, Linan-Cabello MA (2007) Relationships among thermal stress, bleaching and oxidative damage in the hermatypic coral, Pocillopora capitata. Comp Biochem Physiol C Toxicol Pharmacol 146:194–202

    Article  PubMed  Google Scholar 

  • Franck F, Houyoux P-A (2008) The Mehler reaction in Chlamydomonas during photosynthetic induction and steady-state photosynthesis in wild-type and in a mitochondrial mutant. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis energy from the sun. Springer, Netherlands, pp 581–584

    Chapter  Google Scholar 

  • Fransolet D, Roberty S, Plumier J-C (2012) Establishment of endosymbiosis: the case of cnidarians and Symbiodinium. J Exp Mar Biol Ecol 420–421:1–7

    Article  Google Scholar 

  • Fransolet D, Roberty S, Plumier J-C (2014) Impairment of symbiont photosynthesis increases host cell proliferation in the epidermis of the sea anemone Aiptasia pallida. Mar Biol 161:1735–1743

    Article  CAS  Google Scholar 

  • Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host-cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 182:324–333

    Article  Google Scholar 

  • Gorbunov MY, Kolber ZS, Lesser MP, Falkowski PG (2001) Photosynthesis and photoprotection in symbiotic corals. Limnol Oceanogr 46:75–85

    Article  CAS  Google Scholar 

  • Hill R, Brown CM, DeZeeuw K, Campbell DA, Ralph PJ (2011) Increased rate of D1 repair in coral symbionts during bleaching is insufficient to counter accelerated photo-inactivation. Limnol Oceanogr 56:139–146

    Article  Google Scholar 

  • Hill R, Szabó M, UrRehman A, Vass I, Ralph PJ, Larkum AWD (2014) Inhibition of photosynthetic CO2 fixation in the coral Pocillopora damicornis and its relationship to thermal bleaching. J Exp Biol 217:2150–2162

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Johnson X, Vandystadt G, Bujaldon S, Wollman F-A, Dubois R, Roussel P, Alric J, Béal D (2009) A new setup for in vivo fluorescence imaging of photosynthetic activity. Photosynth Res 102:85–93

    Article  CAS  PubMed  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Kaiser W (1976) The effect of hydrogen peroxide on CO2 fixation of isolated intact chloroplasts. Biochim Biophys Acta 440:476–482

    Article  CAS  PubMed  Google Scholar 

  • Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK (2014) Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J Phycol 50:1035–1047

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the its region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • Lascano RH, Gómez LD, Casano LM, Trippi VS (1998) Changes in gluthatione reductase activity and protein content in wheat leaves and chloroplasts exposed to photooxidative stress. Plant Physiol Biochem 36:321–329

    Article  CAS  Google Scholar 

  • Leggat W, Whitney S, Yellowlees D (2004) Is coral bleaching due to the instability of the zooxanthellae dark reactions? Symbiosis 37:137–153

    CAS  Google Scholar 

  • Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283

    Article  CAS  Google Scholar 

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Biol Ecol 300:217–252

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP (2011) Coral bleaching: causes and mechanisms Coral reefs: an ecosystem in transition. Springer, Berlin, pp 405–419

    Book  Google Scholar 

  • Lesser MP, Shick JM (1989a) Photoadaptation and defenses against oxygen-toxicity in zooxanthellae from natural-populations of symbiotic cnidarians. J Exp Mar Biol Ecol 134:129–141

    Article  Google Scholar 

  • Lesser MP, Shick JM (1989b) Effects of irradiance and ultraviolet radiation and photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar Biol 102:243–255

    Article  Google Scholar 

  • Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377

    Article  Google Scholar 

  • Lesser MP, Stat M, Gates RD (2013) The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs 32:603–611

    Article  Google Scholar 

  • Lesser MP, Stochaj WR, Tapley DW, Shick JM (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232

    Article  Google Scholar 

  • Li S, Lu W, Li G-F, Gong Y-D, Zhao N-M, Zhang R-X, Zhou H-M (2004) Interaction of hydrogen peroxide with ribulose-1,5-bisphosphate carboxylase/oxygenase from rice. Biochem (Moscow) 69:1136–1142

    Article  CAS  Google Scholar 

  • Lilley RM, Ralph PJ, Larkum AWD (2010) The Determination of activity of the enzyme rubisco in cell extracts of the dinoflagellate alga Symbiodinium sp. by manganese chemiluminescence and its response to short-term thermal stress of the alga. Plant Cell Environ 33:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Sun J, Y-g Song, Liu B, Y-k Xu, S-x Zhang, Tian Q, Liu Y (2004) Superoxide, hydrogen peroxide and hydroxyl radical in D1/D2/cytochrome b-559 photosystem II reaction center complex. Photosynth Res 81:41–47

    Article  CAS  PubMed  Google Scholar 

  • McGinty E, Pieczonka J, Mydlarz L (2012) Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature. Microb Ecol 1000–1007

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts: i. Mechanism of the reduction of oxygen and other hill reagents. Arch Biochem Biophys 33:65–77

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Asada K (1996) Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol 37:423–430

    Article  CAS  Google Scholar 

  • Murshed R, Lopez-Lauri F, Sallanon H (2008) Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Anal Biochem 383:320–322

    Article  CAS  PubMed  Google Scholar 

  • Oliver JK, Berkelmans R, Eakin CM (2009) Coral bleaching in space and time. In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer, Berlin Heidelberg, pp 21–39

    Chapter  Google Scholar 

  • Peskin AV, Winterbourn CC (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293:157–166

    Article  CAS  PubMed  Google Scholar 

  • Ragni M, Airs RL, Hennige SJ, Suggett DJ, Warner ME, Geider RJ (2010) PSII photoinhibition and photorepair in Symbiodinium (Pyrrhophyta) differs between thermally tolerant and sensitive phylotypes. Mar Ecol Prog Ser 406:57–70

    Article  CAS  Google Scholar 

  • Reynolds JM, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci USA 105:13674–13678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richier S, Furla P, Plantivaux A, Merle PL, Allemand D (2005) Symbiosis-induced adaptation to oxidative stress. J Exp Biol 208:277–285

    Article  PubMed  Google Scholar 

  • Richier S, Sabourault C, Courtiade J, Zucchini N, Allemand D, Furla P (2006) Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS J 273:4186–4198

    Article  CAS  PubMed  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  CAS  PubMed  Google Scholar 

  • Roberty S, Bailleul B, Berne N, Franck F, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204:81–91

    Article  CAS  PubMed  Google Scholar 

  • Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579

    Article  CAS  Google Scholar 

  • Saragosti E, Tchernov D, Katsir A, Shaked Y (2010) Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium. PLoS One 5:e12508

    Article  PubMed Central  PubMed  Google Scholar 

  • Schreiber U, Hormann H, Asada K, Neubauer C (1995) O2-dependent electron flow in intact spinach chloroplasts: properties and possible regulation of the Mehler-Ascorbate Peroxidase cycle. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Netherlands, pp 813–818

    Google Scholar 

  • Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Glob Chang Biol 11:1–11

    Article  Google Scholar 

  • Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci USA 105:9256–9261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suggett D, Moore CM, Geider R (2010) Estimating Aquatic Productivity from Active Fluorescence Measurements. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Netherlands, pp 103–127

    Chapter  Google Scholar 

  • Suggett DJ, Warner ME, Smith DJ, Davey P, Hennige S, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J Phycol 44:948–956

    Article  CAS  Google Scholar 

  • Takahashi S, Whitney SM, Badger MR (2009) Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci USA 106:3237–3242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255

    Article  CAS  PubMed  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tolleter D, Seneca François O, DeNofrio Jan C, Krediet Cory J, Palumbi Stephen R, Pringle John R, Grossman Arthur R (2013) Coral bleaching independent of photosynthetic activity. Curr Biol 23:1782–1786

    Article  CAS  PubMed  Google Scholar 

  • Tremblay P, Grover R, Maguer JF, Legendre L, Ferrier-Pagès C (2012) Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J Exp Biol 215:1384–1393

    Article  CAS  PubMed  Google Scholar 

  • Visram S, Douglas AE (2006) Molecular diversity of symbiotic algae (zooxanthellae) in scleractinian corals of Kenya. Coral Reefs 25:172–176

    Article  Google Scholar 

  • Visram S, Wiedenmann J, Douglas AE (2006) Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. J Mar Biol Assoc UK 86:1281–1283

    Article  CAS  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Wooldridge SA (2009) A new conceptual model for the warm-water breakdown of the coral–algae endosymbiosis. Mar Freshw Res 60:483–496

    Article  CAS  Google Scholar 

  • Yang S-Y, Keshavmurthy S, Obura D, Sheppard CRC, Visram S, Chen CA (2012) Diversity and distribution of Symbiodinium associated with seven common coral species in the Chagos Archipelago, Central Indian Ocean. PLoS One 7:e35836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fonds National de la Recherche Scientifique (FRFC 2.4.631.09 and FRFC. 2.4597, CDR J.0032.1, and MIS F.4520 to PC) and from the University of Liège (C-13/22 to JCP and FF). PC and FF are Research Associate and Research Director from FRS-FNRS. We thank Dr P. Meyer for advices on statistical analysis and the two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Roberty.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberty, S., Fransolet, D., Cardol, P. et al. Imbalance between oxygen photoreduction and antioxidant capacities in Symbiodinium cells exposed to combined heat and high light stress. Coral Reefs 34, 1063–1073 (2015). https://doi.org/10.1007/s00338-015-1328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1328-5

Keywords

Navigation