Skip to main content
Log in

Microkinetic modeling of the autoxidative curing of an alkyd and oil-based paint model system

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Elucidating the curing and aging mechanisms of alkyd and other oil-based paints is valuable for the fields of conservation and bio-based coatings. Recent research has demonstrated the limitations of artificial aging in predicting the actual properties of paints that are hundreds of years old. Kinetic modeling offers pathways to develop a realistic and dynamic description of the composition of these oil-based paint coatings and facilitates the exploration of the effects of various environmental conditions on their long-term chemical stability. This work presents the construction of a kinetic Monte Carlo framework from elementary steps for the cobalt-catalyzed autoxidative curing of an ethyl linoleate model system up to the formation of single cross-links. Kinetic correlations for reaction families of similar chemistry are employed to reduce the number of parameters required to calculate rate constants in Arrhenius form. The model, developed from mechanisms proposed in the literature, shows good agreement with experiment for the formation of primary products in the early stages of curing. The model has also revealed that the mechanisms proposed in the literature for the formation of secondary products, such as volatile aldehydes, are still not well established, and alternative routes are under evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.L. Eastlake, Materials for a History of Oil Painting, vol. 1, 1st edn. (Longman, Brown, Green, and Longmans, London, 1847)

    Google Scholar 

  2. M.F. Mecklenburg, C.S. Tumosa, Traditional oil paints: the effects of long-term chemical and mechanical properties on restoration efforts. MRS Bull. 26(1), 51–54 (2001)

    Article  Google Scholar 

  3. R. Ploeger, D. Scalarone, O. Chiantore, Thermal analytical study of the oxidative stability of artists’ alkyd paints. Polym. Degrad. Stab. 94(11), 2036–2041 (2009)

    Article  Google Scholar 

  4. R. Vinu, L.J. Broadbelt, Unraveling reaction pathways and specifying reaction kinetics for complex systems. Annu. Rev. Chem. Biomol. Eng. 3, 29–54 (2012)

    Article  Google Scholar 

  5. D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  6. L. Wang, L.J. Broadbelt, Explicit sequence of styrene/methyl methacrylate gradient copolymers synthesized by forced gradient copolymerization with nitroxide-mediated controlled radical polymerization. Macromolecules 42(20), 7961–7968 (2009)

    Article  ADS  Google Scholar 

  7. L. Wang, L.J. Broadbelt, Tracking explicit chain sequence in kinetic Monte Carlo simulations. Macromol. Theory Simul. 20(1), 54–64 (2011)

    Article  Google Scholar 

  8. L. Wang, L.J. Broadbelt, Model-based design for preparing styrene/methyl methacrylate structural gradient copolymers. Macromol. Theory Simul. 20(3), 191–204 (2011)

    Article  Google Scholar 

  9. R. Vinu, S.E. Levine, L. Wang, L.J. Broadbelt, Detailed mechanistic modeling of poly (styrene peroxide) pyrolysis using kinetic Monte Carlo simulation. Chem. Eng. Sci. 69(1), 456–471 (2012)

    Article  Google Scholar 

  10. J.H. Hartshorn, in Applications of FTIR to Paint Analysis. Analysis of Paints and Related Materials: Current Techniques for Solving Coatings Problems (American Society for Testing and Materials, Philadelphia, 1992), pp. 127–147

  11. S.T. Warzeska, M. Zonneveld, R. van Gorkum, W.J. Muizebelt, E. Bouwman, J. Reedijk, The influence of bipyridine on the drying of alkyd paints: a model study. Prog. Org. Coat. 44(3), 243–248 (2002)

    Article  Google Scholar 

  12. M. Lazzari, O. Chiantore, Drying and oxidative degradation of linseed oil. Polym. Degrad. Stab. 65(2), 303–313 (1999)

    Article  Google Scholar 

  13. J. Mallégol, J. Lemaire, J.L. Gardette, Drier influence on the curing of linseed oil. Prog. Org. Coat. 39(2), 107–113 (2000)

    Article  Google Scholar 

  14. Z. Liu, H. Kooijman, A.L. Spek, E. Bouwman, New manganese-based catalyst systems for alkyd paint drying. Prog. Org. Coat. 60(4), 343–349 (2007)

    Article  Google Scholar 

  15. Z.O. Oyman, W. Ming, R. van der Linde, Oxidation of drying oils containing non-conjugated and conjugated double bonds catalyzed by a cobalt catalyst. Prog. Org. Coat. 54(3), 198–204 (2005)

    Article  Google Scholar 

  16. Z.O. Oyman, W. Ming, R. van der Linde, R. van Gorkum, E. Bouwman, Effect of [Mn(acac)3] and its combination with 2,2-bipyridine on the autoxidation and oligomerisation of ethyl linoleate. Polymer 46(6), 1731–1738 (2005)

    Article  Google Scholar 

  17. G. Ellis, M. Claybourn, S.E. Richards, The application of Fourier transform Raman spectroscopy to the study of paint systems. Spectrochim. Acta Part Mol. Spectrosc. 46(2), 227–241 (1990)

    Article  ADS  Google Scholar 

  18. W.J. Muizebelt, J.C. Hubert, R.A.M. Venderbosch, Mechanistic study of drying of alkyd resins using ethyl linoleate as a model substance. Prog. Org. Coat. 24, 263–279 (1994)

    Article  Google Scholar 

  19. W.J. Muizebelt, J.J. Donkerbroek, M.W.F. Nielen, J.B. Hussem, M.E.F. Biemond, R.P. Klaasen, K.H. Zabel, Oxidative crosslinking of alkyd resins studied with mass spectrometry and NMR using model compounds. J. Coat. Technol. 70(876), 83–93 (1998)

    Article  Google Scholar 

  20. Z.O. Oyman, W. Ming, R. van der Linde, Oxidation of 13C-labeled ethyl linoleate monitored and quantitatively analyzed by 13C NMR. Eur. Polym. J. 42(6), 1342–1348 (2006)

    Article  Google Scholar 

  21. W.J. Muizebelt, M.W.F. Nielen, Oxidative crosslinking of unsaturated fatty acids studied with mass spectrometry. J. Mass Spectrom. 31, 545–554 (1996)

    Article  Google Scholar 

  22. E. Bouwman, R. Gorkum, A study of new manganese complexes as potential driers for alkyd paints. J. Coat. Technol. Res. 4(4), 491–503 (2007)

    Article  Google Scholar 

  23. J. Mallégol, L. Gonon, S. Commereuc, V. Verney, Thermal (DSC) and chemical (iodometric titration) methods for peroxides measurements in order to monitor drying extent of alkyd resins. Prog. Org. Coat. 41(1), 171–176 (2001)

    Article  Google Scholar 

  24. J.D. van den Berg, K. van den Berg, J. Boon, Determination of the degree of hydrolysis of oil paint samples using a two-step derivatisation method and on-column GC/MS. Prog. Org. Coat. 41(1–3), 143–155 (2001)

    Article  Google Scholar 

  25. P.D. Iedema, J.J. Hermans, K. Keune, A. van Loon, and M.J.N. Stols-Witlox. 2014. Mathematical modeling of mature oil paint networks. In ICOM-CC 17th Triennial Conference Preprints, Melbourne, 15–19 September 2014, ed. J. Bridgland, art. 1604, 8 pp. Paris: International Council of Museums. (ISBN 978-92-9012-410-8)

  26. F. Garcia-Ochoa, J. Querol, A. Romero, Modeling of the liquid-phase n-octane oxidation catalyzed by cobalt. Ind. Eng. Chem. Res. 29(10), 1989–1994 (1990)

    Article  Google Scholar 

  27. L.J. Broadbelt, J. Pfaendtner, Lexicography of kinetic modeling of complex reaction networks. AIChE J. 51(8), 2112–2121 (2005)

    Article  Google Scholar 

  28. E.T. Denisov, I.B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology (CRC Press, Boca Raton, 2005)

    Book  Google Scholar 

  29. H.W. Gardner, Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic. Biol. Med. 7(1), 65–86 (1989)

    Article  Google Scholar 

  30. E.N. Frankel, Lipid Oxidation (Woodhead Publishing, Cambridge, 2012)

    Google Scholar 

  31. R. van Gorkum, E. Bouwman, The oxidative drying of alkyd paint catalysed by metal complexes. Coord. Chem. Rev. 249(17–18), 1709–1728 (2005)

    Google Scholar 

  32. M.D. Soucek, T. Khattab, J. Wu, Review of autoxidation and driers. Prog. Org. Coat. 73(4), 435–454 (2012)

    Article  Google Scholar 

  33. E. Spier, U. Neuenschwander, I. Hermans, Insights into the cobalt(II)-catalyzed decomposition of peroxide. Angew. Chem. Int. Ed. 52(5), 1581–1585 (2013)

    Article  Google Scholar 

  34. E. Spier, I. Hermans, Enhancing the deperoxidation activity of cobalt(II) acetylacetonate by the addition of octanoic acid. ChemPhysChem 14(14), 3384–3388 (2013)

    Article  Google Scholar 

  35. E.N. Frankel, Volatile lipid oxidation products. Prog. Lipid Res. 22(1), 1–33 (1983)

    Article  Google Scholar 

  36. R.A. Hancock, N.J. Leeves, P.F. Nicks, Studies in autoxidation: Part I. The volatile by-products resulting from the autoxidation of unsaturated fatty acid methyl esters. Prog. Org. Coat. 17(3), 321–336 (1989)

    Article  Google Scholar 

  37. J. Pfaendtner, L.J. Broadbelt, Mechanistic modeling of lubricant degradation. 2. The autoxidation of decane and octane. Ind. Eng. Chem. Res. 47(9), 2897–2904 (2008)

    Article  Google Scholar 

  38. M.G. Evans, M. Polanyi, Inertia and driving force of chemical reactions. Trans. Faraday Soc. 34, 11–24 (1938)

    Article  Google Scholar 

  39. S.W. Benson, Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters, 2nd edn. (Wiley, New York, 1976)

    Google Scholar 

  40. J. Pfaendtner, L.J. Broadbelt, Mechanistic modeling of lubricant degradation. 1. Structure-reactivity relationships for free-radical oxidation. Ind. Eng. Chem. Res. 47(9), 2886–2896 (2008)

    Article  Google Scholar 

  41. S.E. Stein, J.M. Rukkers, and R.L. Brown, NIST Standard Reference Database 25: NIST Structures and Properties Database and Estimation Program. Gaithersberg, MD, 1991

  42. R. Sumathi, W.H. Green Jr, A priori rate constants for kinetic modeling. Theor. Chim. Acta 108(4), 187–213 (2002)

    Article  Google Scholar 

  43. D.J. Henry, L. Radom, Quantum-Mechanical Prediction of Thermochemical Data, in Theoretical Thermochemistry of Radicals, ed. by J. Cioslowski (Springer, New York, 2001), pp. 161–197

    Google Scholar 

  44. A.S. Menon, G.P.F. Wood, D. Moran, L. Radom, Bond dissociation energies and radical stabilization energies: an assessment of contemporary theoretical procedures. J. Phys. Chem. A 111(51), 13638–13644 (2007)

    Article  Google Scholar 

  45. M.L. Coote, Reliable theoretical procedures for the calculation of electronic-structure information in hydrogen abstraction reactions. J. Phys. Chem. A 108(17), 3865–3872 (2004)

    Article  Google Scholar 

  46. C.Y. Lin, J.L. Hodgson, M. Namazian, M.L. Coote, Comparison of G3 and G4 theories for radical addition and abstraction reactions. J. Phys. Chem. A 113(15), 3690–3697 (2009)

    Article  Google Scholar 

  47. X. Zheng, P. Blowers, The application of composite energy methods to n-butyl radical β-scission reaction kinetic estimations. Theor. Chem. Acc. 117(2), 207–212 (2007)

    Article  Google Scholar 

  48. F. Wang, D.B. Cao, G. Liu, J. Ren, Y.W. Li, Theoretical study of the competitive decomposition and isomerization of 1-hexyl radical. Theor. Chem. Acc. 126(1–2), 87–98 (2010)

    Article  Google Scholar 

  49. D.B. Min, J.M. Boff, Chemistry and reaction of singlet oxygen in foods. Compr. Rev. Food Sci. Food Saf. 1(2), 58–72 (2002)

    Article  Google Scholar 

  50. E.N. Frankel, Chemistry of free radical and singlet oxidation of lipids. Prog. Lipid Res. 23, 197–221 (1985)

    Article  Google Scholar 

  51. E.N. Frankel, W.E. Neff, W.K. Rohwedder, B.P.S. Khambay, R.F. Garwood, B.C.L. Weedon, Analysis of autoxidized fats by gas chromatography-mass spectrometry: II. Methyl linoleate. Lipids 12(11), 908–913 (1977)

    Article  Google Scholar 

  52. E.T. Denisov, Liquid-Phase Reaction Rate Constants (Plenum Press, New York, 1974)

    Google Scholar 

  53. N.M. Emanuel, E.T. Denisov, Z.K. Maizus, Liquid-Phase Oxidation of Hyrdocarbons (Plenum Press, New York, 1967)

    Google Scholar 

  54. U. Neuenschwander, I. Hermans, Thermal and catalytic formation of radicals during autoxidation. J. Catal. 287, 1–4 (2012)

    Article  Google Scholar 

  55. S.M.D. Naqvi, F. Khan, Selective homogeneous oxidation system for producing hydroperoxides concentrate: kinetics of catalytic oxidation of gas oils. Ind. Eng. Chem. Res. 48(12), 5642–5655 (2009)

    Article  Google Scholar 

  56. E.T. Denisov, T.G. Denisova, T.S. Pokidova, Handbook of Free Radical Initiators (Wiley, New Jersey, 2003)

    Book  Google Scholar 

  57. D.T. Gillespie, Concerning the validity of the stochastic approach to chemical kinetics. J. Stat. Phys. 16, 311–318 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  58. D.T. Gillespie, Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58(1), 35–55 (2007)

    Article  ADS  Google Scholar 

  59. F.D. Gunstone, F.B. Padley (eds.), Lipid Technologies and Applications (Marcel Dekker, New York, 1997)

    Google Scholar 

  60. E. Choe, D.B. Min, Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 5(4), 169–186 (2006)

    Article  Google Scholar 

  61. C.D. Evans, G.R. List, A. Dolev, D.G. McConnell, R.L. Hoffmann, Pentane from thermal decomposition of lipoxidase-derived products. Lipids 2(5), 432–434 (1967)

    Article  Google Scholar 

  62. H.H. Jeleń, M. Obuchowska, R. Zawirska-Wojtasiak, E. Wąsowicz, Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. J. Agric. Food Chem. 48(6), 2360–2367 (2000)

    Article  Google Scholar 

  63. A. Jalan, I.M. Alecu, R. Meana-Pañeda, J. Aguilera-Iparraguirre, K.R. Yang, S.S. Merchant, D.G. Truhlar, W.H. Green, New pathways for formation of acids and carbonyl products in low-temperature oxidation: the Korcek decomposition of γ-ketohydroperoxides. J. Am. Chem. Soc. 135(30), 11100–11114 (2013)

    Article  Google Scholar 

  64. S. Wang, in Hock Rearrangement (Hock Cleavage). Comprehensive Organic Name Reactions and Reagents, vol. 2 (Wiley, Hoboken, NJ), pp. 1438–1441

  65. B.Z. Dlugogorski, E.M. Kennedy, J.C. Mackie, Mechanism of formation of volatile organic compounds from oxidation of linseed oil. Ind. Eng. Chem. Res. 51(16), 5653–5661 (2012)

    Article  Google Scholar 

  66. M. Morita, M. Tokita, Hydroxy radical, hexanal, and decadienal generation by autocatalysts in autoxidation of linoleate alone and with eleostearate. Lipids 43(7), 589–597 (2008)

    Article  Google Scholar 

  67. H.W. Gardner, R.D. Plattner, Linoleate hydroperoxides are cleaved heterolytically into aldehydes by a Lewis acid in aprotic solvent. Lipids 19(4), 294–299 (1984)

    Article  Google Scholar 

  68. C. Schneider, W.E. Boeglin, H. Yin, D.F. Stec, D.L. Hachey, N.A. Porter, A.R. Brash, Synthesis of dihydroperoxides of linoleic and linolenic acids and studies on their transformation to 4-hydroperoxynonenal. Lipids 40(11), 1155–1162 (2005)

    Article  Google Scholar 

  69. A.A. Frimer, The reaction of singlet oxygen with olefins: the question of mechanism. Chem. Rev. 79(5), 359–387 (1979)

    Article  Google Scholar 

  70. C.M. Spickett, The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol. 1(1), 145–152 (2013)

    Article  Google Scholar 

  71. M. Morita, M. Tokita, The real radical generator other than main-product hydroperoxide in lipid autoxidation. Lipids 41(1), 91–95 (2006)

    Article  Google Scholar 

  72. L.J. Broadbelt, S.M. Stark, M.T. Klein, Computer generated pyrolysis modeling: on-the-fly generation of species, reactions, and rates. Ind. Eng. Chem. Res. 33(4), 790–799 (1994)

    Article  Google Scholar 

  73. R.G. Susnow, A.M. Dean, W.H. Green, P. Peczak, L.J. Broadbelt, Rate-based construction of kinetic models for complex systems. J. Phys. Chem. A 101(20), 3731–3740 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the National Science Foundation (DMR-1241667) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Broadbelt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oakley, L.H., Casadio, F., Shull, K.R. et al. Microkinetic modeling of the autoxidative curing of an alkyd and oil-based paint model system. Appl. Phys. A 121, 869–878 (2015). https://doi.org/10.1007/s00339-015-9363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9363-1

Keywords

Navigation