Skip to main content
Log in

Metabolism and Plant Hormone Action During Clubroot Disease

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Infection of Brassicaceae with the obligate biotrophic pathogen Plasmodiophora brassicae results in the development of root galls (clubroots). During the transformation of a healthy root to a root gall a plethora of changes in primary and secondary metabolism occur. The upper part of an infected plant is retarded in growth due to redirection of assimilates from the shoot to the root. In addition, changes in the levels of plant growth regulators, especially auxins and cytokinins, contribute to the hypertrophy of infected roots. Also, defense reactions are manipulated after inoculation of suitable host plants with P. brassicae. This review summarizes our current knowledge on the changes in these parameters. A model is presented for how primary metabolism and secondary metabolism, including plant hormones, interact to induce clubroot formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alix K, Lariagon C, Delourme R, Manzanares-Dauleux MJ (2007) Exploiting natural genetic diversity and mutant resources of Arabidopsis thaliana to study the A. thaliana-Plasmodiophora brassicae interaction. Plant Breeding 126:218–221

    Article  Google Scholar 

  • Aloni R, Wolf A, Feigenbaum P, Avni A, Klee HJ (1998) The Never ripe mutant provides evidence that tumor-induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiol 117:841–849

    Article  PubMed  CAS  Google Scholar 

  • Ando S, Asano T, Tsushima S, Kamachi S, Hagio T, Tabei Y (2005) Changes in gene expression of putative isopentenyltransferase during clubroot development of Chinese cabbage (Brassica rapa L.). Physiol Mol Plant Pathol 67:59–67

    Article  CAS  Google Scholar 

  • Ando S, Tsushima S, Tagiri A, Kamachi S, Konagaya K-I, Hagio T, Tabei Y (2006) Increase in BrAO1 gene expression and aldehyde oxidase activity during clubroot development in Chinese cabbage (Brassica rapa L.). Mol Plant Pathol 7:223–234

    Article  CAS  PubMed  Google Scholar 

  • Ando S, Tsushima S, Kamachi S, Konagaya K, Tabei Y (2008) Alternative transcription initiation of the nitrilase gene (BrNIT2) caused by infection with Plasmodiophora brassicae Woron. in Chinese cabbage (Brassica rapa L.). Plant Mol Biol 68:557–569

    Article  PubMed  CAS  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97:14819–14824

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, Fink GR (1994) Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci USA 91:6649–6653

    Article  PubMed  CAS  Google Scholar 

  • Bennett RN, Wenke T, Freudenberg B, Mellon FA, Ludwig-Müller J (2005) The tu8 mutation of Arabidopsis thaliana encoding a heterochromatin protein 1 causes defects in the induction of secondary metabolite biosynthesis. Plant Biol 7:348–357

    Article  PubMed  CAS  Google Scholar 

  • Bischoff M, Löw R, Grsic S, Rausch T, Hilgenberg W, Ludwig-Müller J (1995) Infection with the obligate biotroph Plasmodiophora brassicae, the causal agent of the clubroot disease, does not affect expression of NIT1/2-related nitrilases in roots of Chinese cabbage. J Plant Physiol 147:341–345

    CAS  Google Scholar 

  • Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired-resistance. Plant Cell 6:1845–1857

    Article  PubMed  CAS  Google Scholar 

  • Bowling SA, Clarke JD, Liu YD, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584

    Article  PubMed  CAS  Google Scholar 

  • Brodmann D, Schuller A, Ludwig-Müller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant Microbe Interact 15:693–700

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205

    Article  PubMed  CAS  Google Scholar 

  • Butcher DN, El-Tigani S, Ingram DS (1974) The role of indole glucosinolates in the club root disease of the cruciferae. Physiol Plant Pathol 4:127–140

    Article  CAS  Google Scholar 

  • Butcher DN, Searle LM, Mousdale DMA (1976) The role of glucosinolates in the club root disease of the cruciferae. Med Fac Landbouw Rijk 41(2):525–532

    CAS  Google Scholar 

  • Cao T, Srivastava S, Rahman MH, Kav NNV, Hotte N, Deyholos MK, Strelkov SE (2008) Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci 174:97–115

    CAS  Google Scholar 

  • Chen C-M, Eckert RL (1977) Phosphorylation of cytokinin by adenosine kinase from wheat germ. Plant Physiol 59:443–447

    Article  PubMed  CAS  Google Scholar 

  • Chong C, Chiang MS, Crete R (1981) Thiocyanate ion content in relation to clubroot disease severity in cabbages. Hort Sci 16:663–664

    CAS  Google Scholar 

  • Chong C, Chiang MS, Crete R (1984) Studies in glucosinolates in clubroot-resistant selections and susceptible commercial cultivars of cabbages. Euphytica 34:65–73

    Article  Google Scholar 

  • Clarke JD, Liu Y, Klessig D, Dong X (1998) Uncoupling PR gene expression from NPR1 and bacterial resistance: characterisation of the dominant Arabidopsis cpr6–1 mutant. Plant Cell 10:557–569

    Article  PubMed  CAS  Google Scholar 

  • Dekhuijzen HM (1981) The occurrence of free and bound cytokinins in plasmodia of Plasmodiophora brassicae isolated from tissue cultures of clubroots. Plant Cell Rep 1:18–20

    Article  CAS  Google Scholar 

  • Dekhuijzen HM, Overeem JC (1971) The role of cytokinins in clubroot formation. Physiol Plant Pathol 1:151–161

    Article  CAS  Google Scholar 

  • Devos S, Prinsen E (2006) Plant hormones: a key in clubroot development. Commun Agric Appl Biol Sci 71(3 Pt B):869–872

    PubMed  CAS  Google Scholar 

  • Devos S, Vissenberg K, Verbelen J-P, Prinsen E (2005) Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormone balance. New Phytol 166:241–250

    Article  PubMed  CAS  Google Scholar 

  • Devos S, Laukens K, Deckers P, Van Der Straeten D, Beeckman T, Inze D, van Onckelen H, Witters E, Prinsen E (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant Microbe Interact 19:1431–1433

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Dong H-P, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong H (2004) Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136:3628–3638

    Article  PubMed  CAS  Google Scholar 

  • Elbein AD (1974) The metabolism of α,α-trehalose. Adv Carbohydrate Chem Biochem 30:227–257

    Article  CAS  Google Scholar 

  • Evans J, Scholes JD (1995) How does clubroot (Plasmodiophora brassicae) alter the regulation of carbohydrate metabolism in Arabidopsis thaliana? Aspects Appl Biol 42:125–132

    Google Scholar 

  • Fritzius T, Aeschbacher R, Wiemken A, Wingler A (2001) Induction of ApL3 expression by trehalose complements the starch-deficient Arabidopsis mutant adg2–1 lacking ApL1, the large subunit of ADPglucose pyrophosphorylase. Plant Physiol 126:883–889

    Article  PubMed  CAS  Google Scholar 

  • Fuchs H, Sacristan MD (1996) Identification of a gene in Arabidopsis thaliana controlling resistance to clubroot (Plasmodiophora brassicae) and characterisation of the resistance response. Mol Plant Microbe Interact 9:91–97

    CAS  Google Scholar 

  • Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102

    Article  PubMed  CAS  Google Scholar 

  • Glawischnig E (2007) Camalexin. Phytochemistry 6:401–406

    Article  CAS  Google Scholar 

  • Grotewold E, Drummond BJ, Bowen B, Peterson T (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76:543–553

    Article  PubMed  CAS  Google Scholar 

  • Grsic S, Sauerteig S, Neuhaus K, Albrecht M, Rossiter J, Ludwig-Müller J (1998) Physiological analysis of transgenic Arabidopsis thaliana plants expressing one nitrilase isoform in sense or antisense direction. J Plant Physiol 153:446–456

    CAS  Google Scholar 

  • Grsic S, Kirchheim B, Pieper K, Fritsch M, Hilgenberg W, Ludwig-Müller J (1999) Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot-diseased Chinese cabbage plants. Physiol Plant 105:521–531

    Article  CAS  Google Scholar 

  • Grsic-Rausch S, Kobelt P, Siemens J, Bischoff M, Ludwig-Müller J (2000) Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis thaliana. Plant Physiol 122:369–378

    Article  PubMed  CAS  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  PubMed  CAS  Google Scholar 

  • Grubb CD, Zipp BJ, Ludwig-Müller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908

    Article  PubMed  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  PubMed  CAS  Google Scholar 

  • Haughn GW, Davin L, Giblin M, Underhill EW (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana. The Glucosinolates. Plant Physiol 97:217–226

    Article  PubMed  CAS  Google Scholar 

  • Helmlinger J, Rausch T, Hilgenberg W (1987) A soluble protein factor from Chinese cabbage converts indole-3-acetaldoxime to IAA. Phytochemistry 26:615–618

    Article  CAS  Google Scholar 

  • Hillebrand H, Bartling D, Weiler EW (1998) Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole-3-acetic acid biosynthesis in Arabidopsis thaliana. Plant Mol Biol 36:89–99

    Article  PubMed  CAS  Google Scholar 

  • Hoffman T, Schmidt JS, Zheng XY, Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol 119:935–949

    Article  PubMed  CAS  Google Scholar 

  • Holtorf S, Ludwig-Müller J, Apel K, Bohlmann H (1998) High level expression of a viscotoxin in Arabidopsis thaliana gives enhanced resistance against Plasmodiophora brassicae. Plant Mol Biol 36:673–680

    Article  PubMed  CAS  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450 s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384

    Article  PubMed  CAS  Google Scholar 

  • Inzé D, Follin A, van Lijsebettens M, Simoens C, Genetello M, van Montagu M, Schell J (1984) Genetic analyses of the individual T-DNA genes of Agrobacterium tumefaciens: Further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194:265–274

    Article  Google Scholar 

  • Ishikawa T, Okazaki K, Kuroda H, Itoh K, Mitsui T, Hori H (2007a) Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development. Mol Plant Pathol 8:623–637

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Kuroda H, Okazaki K, Itoh K, Mitsui T, Hori H (2007b) Evaluation of roles of amidase which converts indole-3-acetamide to indole-3-acetic acid, in formation of clubroot in turnip. Bull Facul Agric Niigata Univ 60:53–60

    CAS  Google Scholar 

  • Jubault M, Hamon C, Gravot A, Lariagon C, Delourme R, Bouchereau A, Manzanares Dauleux MJ (2008) Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes. Plant Physiol 146:2008–2019

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh JA, Williams PH (1981) Indole auxins in Plasmodiophora-infected cabbage roots and hypocotyls. Trans Br Mycol Soc 77:125–129

    CAS  Google Scholar 

  • Keen NT, Williams PH (1969) Translocation of sugars into infected cabbage tissues during clubroot development. Plant Physiol 44:748–754

    Article  PubMed  CAS  Google Scholar 

  • Kim S-H, Arnold D, Lloyd A, Roux SJ (2001) Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress. Plant Cell 13:2619–2630

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Durrett TP, Last RL, Jander G (2004) Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2. Plant Mol Biol 54:671–682

    Article  PubMed  CAS  Google Scholar 

  • Knoester M, van Loon LC, van den Heuvel J, Hennig J, Bol JF, Linthorst HJM (1998) Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc Natl Acad Sci USA 95:1933–1937

    Article  PubMed  CAS  Google Scholar 

  • Kobelt P, Siemens J, Sacristan MD (2000) Histological characterisation of the incompatible interaction between Arabidopsis thaliana and the obligate biotrophic pathogen Plasmodiophora brassicae. Mycol Res 2:220–225

    Article  Google Scholar 

  • Koch E, Cox R, Williams PH (1991) Infection of Arabidopsis thaliana by Plasmodiophora brassicae. J Phytopathol 132:99–104

    Article  Google Scholar 

  • Kwade Z, Światek A, Azmi A, Goossens A, Inzé D, Van Onckelen H, Roef L (2005) Identification of four adenosine kinase isoforms in tobacco BY-2 cells and their putative role in the cell cycle-regulated cytokinin metabolism. J Biol Chem 280:17512–17519

    Article  PubMed  CAS  Google Scholar 

  • Laukens K, Lenobel R, Strnad M, Van Onckelen H, Witters E (2003) Cytokinin affinity purification and identification of a tobacco BY-2 adenosine kinase. FEBS Lett 533:63–66

    Article  PubMed  CAS  Google Scholar 

  • LeClere S, Rampey RA, Bartel B (2004) IAR4, a gene required for auxin conjugate sensitivity in Arabidopsis, encodes a pyruvate dehydrogenase E1α homolog. Plant Physiol 135:989–999

    Article  PubMed  CAS  Google Scholar 

  • Li H, Guo H (2007) Molecular basis of the ethylene signaling and response pathway in Arabidopsis. J Plant Growth Regul 26:106–117

    Article  CAS  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 49:249–272

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Müller J (2009) Glucosinolates and the clubroot disease: defense compounds or auxin precursors? Phytochem Rev 8:135–148

    Article  CAS  Google Scholar 

  • Ludwig-Müller J, Cohen JD (2002) Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiol Plant 115:320–329

    Article  PubMed  Google Scholar 

  • Ludwig-Müller J, Hilgenberg W (1990) Conversion of indole-3-acetaldoxime to indole-3 acetonitrile by plasma membranes from Chinese cabbage. Physiol Plant 79:311–318

    Article  Google Scholar 

  • Ludwig-Müller J, Bendel U, Thermann P, Ruppel M, Epstein E, Hilgenberg W (1993) Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected with Plasmodiophora brassicae Woron. New Phytol 125:763–769

    Article  Google Scholar 

  • Ludwig-Müller J, Thermann P, Pieper K, Hilgenberg W (1994) Peroxidase and chitinase isoenzyme activities during root infection of Chinese cabbage with Plasmodiophora brassicae. Physiol Plant 90:661–670

    Article  Google Scholar 

  • Ludwig-Müller J, Kasperczyk N, Schubert B, Hilgenberg W (1995) Identification of salicylic acid in Chinese cabbage and its possible role during root infection with Plasmodiophora brassicae. Curr Topics Phytochem 14:39–45

    Google Scholar 

  • Ludwig-Müller J, Epstein E, Hilgenberg W (1996) Auxin-conjugate hydrolysis in Chinese cabbage: characterization of an amidohydrolase and its role during the clubroot disease. Physiol Plant 97:627–634

    Article  Google Scholar 

  • Ludwig-Müller J, Schubert B, Pieper K, Ihmig S, Hilgenberg W (1997) Glucosinolate content in susceptible and tolerant Chinese cabbage varieties during the development of the clubroot disease. Phytochemistry 44:407–414

    Article  Google Scholar 

  • Ludwig-Müller J, Pieper K, Ruppel M, Cohen JD, Epstein E, Kiddle G, Bennett R (1999a) Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana L. glucosinolate mutants and the development of the clubroot disease. Planta 208:409–419

    Article  PubMed  Google Scholar 

  • Ludwig-Müller J, Ihmig S, Bennett R, Kiddle G, Ruppel M, Hilgenberg W (1999b) The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content. New Phytol 141:443–458

    Article  Google Scholar 

  • Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34:550–563

    Article  CAS  Google Scholar 

  • Lunn JE, Feil R, Hendriks JHM, Gibon Y, Morcuende R, Osuna D, Scheible W-R, Carillo P, Hajirezaei M-R, Stitt M (2006) Sugar induced increases in trehalose 6-phosphate are correlated with redox activation of ADP glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770–777

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DT, Rice KA (1979) Translocation of 14C-labelled assimilates in cabbage during club root development. Ann Appl Biol 92:143–152

    Article  CAS  Google Scholar 

  • Mithen R, Magrath R (1992) A contribution to the life history of Plasmodiophora brassicae: secondary plasmodia development in root galls of Arabidopsis thaliana. Mycol Res 96:877–885

    Article  Google Scholar 

  • Mousdale DMA (1981) Endogenous indolyl-3-acetic acid and pathogen-induced plant growth disorders: distinction between hyperplasia and neoplastic development. Experientia 37:972–973

    Article  CAS  Google Scholar 

  • Müller P, Hilgenberg W (1986) Cytokinin biosynthesis by plasmodia of Plasmodiophora brassicae. Physiol Plant 66:245–250

    Article  Google Scholar 

  • Müller J, Boller T, Wiemken A (1995) Effects of validamycin A, a potent trehalase inhibitor, and phytohormones on trehalose metabolism in roots and root nodules of soybean and cowpea. Planta 197:362–368

    Google Scholar 

  • Mullin WJ, Proudfoot KG, Collins MJ (1980) Glucosinolate content and clubroot of rutabaga and turnip. Can J Plant Sci 60:605–612

    Article  CAS  Google Scholar 

  • Murphy AS, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211:315–324

    Article  PubMed  CAS  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104

    Article  PubMed  CAS  Google Scholar 

  • Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA, Glazebrook J (2007) Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19:2039–2052

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus K, Grsic-Rausch S, Sauerteig S, Ludwig-Müller J (2000) Arabidopsis plants transformed with nitrilase 1 or 2 in antisense direction are delayed in clubroot development. J Plant Physiol 156:756–761

    CAS  Google Scholar 

  • Ockendon JG, Buczacki ST (1979) Indole glucosinolate incidence and clubroot susceptibility of three cruciferous weeds. Trans Br Mycol Soc 72:156–157

    CAS  Google Scholar 

  • Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman P, Ecker JR (2006) ETHYLENE-INSENSITIVE5 encodes a 5′ → 3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci USA 103:13286–13293

    Article  PubMed  CAS  Google Scholar 

  • Paul M (2007) Trehalose 6-phosphate. Curr Opin Plant Biol 10:303–309

    Article  PubMed  CAS  Google Scholar 

  • Pollmann S, Neu D, Weiler EW (2003) Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62:293–300

    Article  PubMed  CAS  Google Scholar 

  • Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, Genschika P (2006) The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 18:3047–3057

    Article  PubMed  CAS  Google Scholar 

  • Raa J (1971) Indole-3-acetic acid levels and the role of indole-3-acetic acid oxidase in the normal root and club-root of cabbage. Physiol Plant 25:130–134

    Article  CAS  Google Scholar 

  • Rausch T, Butcher DN, Hilgenberg W (1981) Nitrilase activity in clubroot diseased plants. Physiol Plant 52:467–470

    Article  CAS  Google Scholar 

  • Rausch T, Butcher DN, Hilgenberg W (1983) Indole-3-methylglucosinolate biosynthesis and metabolism in clubroot diseased plants. Physiol Plant 58:93–100

    Article  CAS  Google Scholar 

  • Rincón A, Priha O, Sotta B, Bonnet M, Le Tacon F (2003) Comparative effects of auxin transport inhibitors on rhizogenesis and mycorrhizal establishment of spruce seedlings inoculated with Laccaria bicolor. Tree Physiol 23:785–791

    PubMed  Google Scholar 

  • Roitsch T, Ehneß R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Regul 32:359–367

    Article  CAS  Google Scholar 

  • Ryder TB, Hedrick SA, Bell JN, Liang X, Clouse SD, Lamb CJ (1987) Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol Genet Genom 210:219–233

    Article  CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005) Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids. J Plant Physiol 162:625–633

    Article  PubMed  CAS  Google Scholar 

  • Schuller A, Ludwig-Müller J (2006) A family of auxin conjugate hydrolases from Brassica rapa: characterization and expression during clubroot disease. New Phytol 171:145–158

    Article  PubMed  CAS  Google Scholar 

  • Seidel C, Walz A, Park S, Cohen JD, Ludwig-Müller J (2006) Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis. Plant Biol 8:340–345

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693

    Article  PubMed  CAS  Google Scholar 

  • Siemens J, Nagel M, Ludwig-Müller J, Sacristan MD (2002) The interaction of Plasmodiophora brassicae and Arabidopsis thaliana: parameters for disease quantification and screening of mutant lines. J Phytopathol 150:592–605

    Article  Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmülling T, Parniske M, Ludwig-Müller J (2006) Transcriptome analysis of Arabidopsis clubroots and disease resistance of cytokinin oxidase/dehydrogenase gene overexpressing plants indicate a key role for cytokinin in disease development. Mol Plant Microbe Interact 19:480–494

    Article  PubMed  CAS  Google Scholar 

  • Siemens J, Glawischnig E, Ludwig-Müller J (2008) Indole glucosinolates and camalexin do not influence the development of the clubroot disease in Arabidopsis thaliana. J Phytopathol 156:332–337

    Article  CAS  Google Scholar 

  • Snyder BA, Nicholson RL (1990) Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248:1637–1639

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3 acetic acid. Plant Cell 17:616–627

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y, Dolezal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar M, Liu G, Nomura K, He SJ, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death, molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Tierens KFM-J, Broekaert WF (1999) Requirement of functional Ethylene-Insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Toxopeus H, Dixon GR, Mattusch P (1986) Physiological specialization in Plasmodiophora brassicae: an analysis by international experimentation. Trans Br Mycol Soc 87:279–287

    Article  Google Scholar 

  • Ugajin T, Takita K, Takahashi H, Muraoka S, Tada T, Mitsui T, Hayakawa T, Ohyama T, Hori H (2003) Increase in indole-3-acetic acid (IAA) level and nitrilase activity in turnips induced by Plasmodiophora brassicae infection. Plant Biotechnol 20:215–220

    CAS  Google Scholar 

  • Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant Microbe Interact 21:1371–1383

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Smalle J, Le J, Saibo NJM, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJJ, Harren FJM, Van Onckelen H, Palme K, Verbelen J-P, Van Der Straeten D (2003) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol 131:1228–1238

    Article  PubMed  CAS  Google Scholar 

  • Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell function. Kluwer Academic Publishers, New York, pp 23–39

    Google Scholar 

  • Walters DR, Shuttleton MA (1985) Polyamines in the roots of turnip infected with Plasmodiophora brassicae Wor. New Phytol 100:209–214

    Article  CAS  Google Scholar 

  • Wingler A, Fritzius T, Wiemken A, Boller T, Aeschbacher RA (2000) Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol 124:105–114

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

  • Wubben MJE, Su H, Rodermel SR, Baum TJ (2001) Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol Plant Microbe Interact 14:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory C (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JE, Normanly J, Chory J, Celenza JC (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450 s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112

    Article  PubMed  CAS  Google Scholar 

  • Zhou N, Tootle TL, Glazebrook J (1999) Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11:2419–2428

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Ludwig-Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig-Müller, J., Prinsen, E., Rolfe, S.A. et al. Metabolism and Plant Hormone Action During Clubroot Disease. J Plant Growth Regul 28, 229–244 (2009). https://doi.org/10.1007/s00344-009-9089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-009-9089-4

Keywords

Navigation