Skip to main content

Advertisement

Log in

Androgens and prostate cancer

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Over 60 years ago Huggins and Hodges demonstrated the importance of androgens and prostate cancer. Since then, significant research has revealed that this relationship is multi-faceted and is interwoven with different signaling cascades and protein coactivators. The complex interrelationship between hormone and cancer is best exemplified by the recurrence and progression of prostate cancer after hormonal therapy to a lethally resistant phenotype despite initially encouraging therapeutic responses. If we are to significantly improve survival with novel therapies, further understanding of the emergence of this resistant phenotype is essential. The purpose of this article is to review the mechanisms of androgen action and its relation to hormonal therapy and mechanisms of hormonal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A, B.
Fig. 2.
Fig. 3A, B.
Fig. 4.

Similar content being viewed by others

References

  1. Bakin RE, et al (2003) Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res 63:1981–1989

    CAS  PubMed  Google Scholar 

  2. Blackledge GR (1996) High-dose bicalutamide monotherapy for the treatment of prostate cancer. Urology 47[Suppl 1A]:44–47

  3. Bostwick D, Shan A, Qian G, et al (1998) Independent origin of multiple foci of prostate intraepithelial neoplasia: comparison with match foci of prostate carcinoma. Cancer 83:1995–2002

    Google Scholar 

  4. Brown RS, et al (2002) Amplification of the androgen receptor gene in bone metastases from hormone-refractory prostate cancer. J Pathol 198:237–244

    Article  CAS  PubMed  Google Scholar 

  5. Bruchovsky N (1993) Androgens and antiandrogens. In: Holland JF, Frei E III, Bast RC, Kufe DW, Morton DL, Weichselbaum RR (eds) Cancer medicine, 3rd edn. Lea & Febiger, Philadelphia, pp 884–896

  6. Bruchovsky N, Wilson JD (1968) The conversion of testosterone to 5’-androstan-17’-ol-3-one by rat prostate in vivo and in vitro. J Biol Chem 243:2012

    CAS  PubMed  Google Scholar 

  7. Budendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y,Mahlamaki E, Schraml P,Moch H,Willi N, Elkahloun AG, Pretlow TG, Gasser TC, Mihatsch MJ, Sauter G, Kallioniemi OP (1999) Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue arrays. JNCI 91:1758–1764

    Article  PubMed  Google Scholar 

  8. Calero M, Rostagno A, Matsubara E, Zlokovic B, Frangione B, Ghiso J (2000) Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech 50:305–315

    Article  CAS  PubMed  Google Scholar 

  9. Cervellera M, Raschella G, Santilli G, Tanno B, Ventura A, Mancini C, Sevignani C, Calabretta B, Sala A (2000) Direct transactivation of the anti-apoptotic gene apolipoprotein J (clusterin) by B-MYB. J Biol Chem 14;275:21055–21060

    Google Scholar 

  10. Cohen P, Peehl DM, Graves HC, Rosenfeld RG (1994) Biologic effects of PSA as an IGFBP-3 protease. J Endocrinol 142:407–415

    CAS  PubMed  Google Scholar 

  11. Cohen P, Peehl DM, Rosenfeld RG (1994) The IGF axis in the prostate. Horm Met Res 26:81–84

    CAS  Google Scholar 

  12. Connor J, Buttyan R, Olsson CA, D’Agati V, O’Toole K, Sawczuk IS (1991) SGP-2 expression as a genetic marker of progressive cellular pathology in experimental hydronephrosis. Kidney Int 39:1098–1103

    CAS  PubMed  Google Scholar 

  13. Cox RL, Crawford ED (1995) Estrogens in the treatment of prostate cancer. J Urol 154:1991–1998

    CAS  PubMed  Google Scholar 

  14. Craft N, et al (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5:280–285

    Article  CAS  PubMed  Google Scholar 

  15. Craft N, et al (1999) Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res 59:5030–5036

    CAS  PubMed  Google Scholar 

  16. Crawford ED, Eisenberger MA, McLeod DG, Spalding JT, Benson R, Dorr FA, et al (1989) A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med 321:419–424

    Google Scholar 

  17. Culig Z, et al (1994) Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54:5474–5478

    CAS  PubMed  Google Scholar 

  18. Culig Z, et al (1993) Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 7:1541–1550

    CAS  PubMed  Google Scholar 

  19. Culig Z, et al (1997) Synergistic activation of androgen receptor by androgen and luteinizing hormone-releasing hormone in prostatic carcinoma cells. Prostate 32:106–114

    Article  CAS  PubMed  Google Scholar 

  20. Daniell HW (1997) Osteoporosis after orchiectomy for prostate cancer. J Urol 157:439–444

    CAS  PubMed  Google Scholar 

  21. Danik M, Chabot JG, Mercier C, Benabid AL, Chauvin C, Quirion R, Suh M (1991) Human gliomas and epileptic foci express high levels of a mRNA related to rat testicular sulfated glycoprotein 2, a purported marker of cell death. Proc Natl Acad Sci U S A 88:8577–8581

    CAS  PubMed  Google Scholar 

  22. Edwards J, et al (2003) Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 89:552–556

    Article  CAS  PubMed  Google Scholar 

  23. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45

    Article  CAS  PubMed  Google Scholar 

  24. Fenton MA, et al (1997) Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin Cancer Res 3:1383–1388

    CAS  PubMed  Google Scholar 

  25. Freeman E, Bloom DA, McGuire EJ (2001) A brief history of testosterone. J Urol 165(2):371–373

    CAS  PubMed  Google Scholar 

  26. French LE, Sappino AP, Tschopp J, Schifferli JA (1992) Distinct sites of production and deposition of the putative cell death marker clusterin in the human thymus. J Clin Invest 90:1919–1925

    CAS  PubMed  Google Scholar 

  27. Fujimoto N, et al (1999) Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J Biol Chem 274:8316–8321

    Article  CAS  PubMed  Google Scholar 

  28. Gnanapragasam VJ, et al (2001) Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br J Cancer 85:1928–1936

    Article  CAS  PubMed  Google Scholar 

  29. Goldenberg SL, Bruchovsky, Gleave ME, Sullivan LD (1996) Low-dose cyproterone acetate plus mini-dose doethylstilbestrol—a protocol for reversible medical castration. Urology 47:882–884

    Article  CAS  PubMed  Google Scholar 

  30. Graff JR (2002) Emerging targets in the AKT pathway for treatment of androgen-independent prostatic adenocarcinoma. Expert Opin Ther Targets 6:103–113

    CAS  PubMed  Google Scholar 

  31. Gregory CW, et al (2001) A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 61:4315–4319

    CAS  PubMed  Google Scholar 

  32. Gregory CW, et al (1998) Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 58:5718–5724

    CAS  PubMed  Google Scholar 

  33. Gregory CW, et al (2001) Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res 61:2892–2898

    CAS  PubMed  Google Scholar 

  34. Grimberg A, Cohen P (2000) Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cell Physiol 183:1–9

    CAS  PubMed  Google Scholar 

  35. Halvorsen OJ, Haukaas SA, Akslen LA (2003) Combined loss of PTEN and p27 expression is associated with tumor cell proliferation by Ki-67 and increased risk of recurrent disease in localized prostate cancer. Clin Cancer Res 9:1474–1479

    CAS  PubMed  Google Scholar 

  36. Ho SM, Leav I, Ghatak S, Merk F, Jagannathan VS, Mallery K (1998) Lack of association between enhanced TRPM-2/clusterin expression and increased apoptotic activity in sex-hormoneinduced prostatic dysplasia of the Noble rat. Am J Pathol 153:131–139

    CAS  PubMed  Google Scholar 

  37. Hobisch A, et al (1998) Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 58:4640–4645

    CAS  PubMed  Google Scholar 

  38. Huggins C, Hodges CV (1941) Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1:293–297

    CAS  Google Scholar 

  39. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875–6881

    Article  CAS  PubMed  Google Scholar 

  40. Hurtado-Coll A, Goldenberg SL, Gleave ME, Klotz L (2002) Intermittent androgen suppression in prostate cancer: the Canadian experience. Urology 60[Suppl 3A]:52–56

  41. Isaacs JT (1999) The biology of hormone refractory prostate cancer. Why does it develop? Urol Clin North Am 26:263–273

    CAS  PubMed  Google Scholar 

  42. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    CAS  PubMed  Google Scholar 

  43. Jongsma J, et al (2000) Androgen-independent growth is induced by neuropeptides in human prostate cancer cell lines. Prostate 42:34–44

    Article  CAS  PubMed  Google Scholar 

  44. July LV, Akbari M, Zellweger T, Jones EC, Goldenberg SL, Gleave M (2002) Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate 50:179–188

    Article  CAS  PubMed  Google Scholar 

  45. Kelly W (1998) Endocrine withdrawal syndrome and its relevance to the management of hormone refractory prostate cancer. European Urology 34:18–23

    Article  Google Scholar 

  46. Kiyama S, Morrison K, Zellweger T, Cox M, Gleave M (2003) Castration-induced increases in insulin-like growth factor-binding protein 2 promotes proliferation of androgen-independent human prostate LNCaP Tumors. Cancer Research 63:3575–3584

    CAS  PubMed  Google Scholar 

  47. Koch-Brandt C, Morgans C (1996) Clusterin: a role in cell survival in the face of apoptosis? (review). Prog Mol Subcell Biol 16:130–149

    CAS  PubMed  Google Scholar 

  48. Koh E, Kanaya J, Namiki M (2001) Adrenal steroids in human prostatic cancer cell lines. Arch Androl 46:117–125

    Article  CAS  PubMed  Google Scholar 

  49. Koivisto PA, et al (1999) Androgen receptor gene alterations and chromosomal gains and losses in prostate carcinomas appearing during finasteride treatment for benign prostatic hyperplasia. Clin Cancer Res 5:3578–3582

    CAS  PubMed  Google Scholar 

  50. Kulik G, Klippel A, Weber MJ (1997) Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 17:1595–1606

    CAS  PubMed  Google Scholar 

  51. Kyprianou N, English HF, Davidson NE, Isaacs JT (1991) Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 51:162–166

    CAS  PubMed  Google Scholar 

  52. Latil A, et al (2001) Evaluation of androgen, estrogen (ER alpha and ER beta), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays. Cancer Res 61:1919–1926

    CAS  PubMed  Google Scholar 

  53. Li JP, DeFea K, Roth RA (1999) Modulation of insulin receptor substrate-1 tyrosine phosphorylation by an Akt/phosphatidylinositol 3-kinase pathway. J Biol Chem 274:9351–9356

    Article  CAS  PubMed  Google Scholar 

  54. Linja MJ, et al (2001) Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61: 3550–3555

    CAS  PubMed  Google Scholar 

  55. Marcelli M, et al (2000) Androgen receptor mutations in prostate cancer. Cancer Res 60:944–949

    CAS  PubMed  Google Scholar 

  56. McDonnell TJ, Navone NM, Troncoso P, Pisters LL, Conti C, von Eschenbach AC, Brisbay S, Logothetis CJ (1997) Expression of bcl-2 oncoprotein and p53 protein accumulation in bone marrow metastases of androgen independent prostate cancer. J Urol 157:569–554

    CAS  PubMed  Google Scholar 

  57. Michel D, Chatelain G, North S, Brun G (1997) Stress-induced transcription of the clusterin/apoJ gene. Biochem J 328:45–50

    CAS  PubMed  Google Scholar 

  58. Miyake H, Hara I, Kamidona S, Gleave M, Eto M (2003) Resistance to cytotoxic induced apoptosis in human prostate cancer cells is associated with intracellular clusterin expression. Oncol Rep. 10:469–473

    Google Scholar 

  59. Miyake H, Pollak M, Nelson C, Gleave ME (2000) Antisense insulinlike growth factor binding protein-5 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model via negative modulation of insulinlike growth factor-I action. Cancer Research 60:3058–3064

    CAS  PubMed  Google Scholar 

  60. Miyake H, Rennie P, Nelson C, Gleave ME, Miyake H, Rennie P, Nelson C, Gleave ME (2000) Testosterone-repressed prostate message-2 (TRPM-2) is an antiapoptotic gene that confers resistance to androgen ablation in prostate cancer xenograft models. Cancer Res 60:170–176

    CAS  PubMed  Google Scholar 

  61. Miyake H, Rennie P, Nelson C, Gleave ME (2000) Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene, testosterone-repressed prostate message- TRPM-2), in prostate cancer xenograft models. Cancer Res 60:2547–2554

    CAS  PubMed  Google Scholar 

  62. Miyamoto H, et al (1998) Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proc Natl Acad Sci U S A 95:7379–7384

    Article  CAS  PubMed  Google Scholar 

  63. Montpetit ML, Lawless KR, Tenniswood M (1986) Androgen repressed messages in the rat ventral prostate. Prostate 8:25–36

    CAS  PubMed  Google Scholar 

  64. Newmark JR, et al (1992) Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci U S A 89:6319–6323

    CAS  PubMed  Google Scholar 

  65. Palmberg C, Koivisto P, Kakkola L, Tammela TL, Kallioniemi OP, Visakorpi T (2000) Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J Urol 164:1992–1995

    CAS  PubMed  Google Scholar 

  66. Parczyk K, Pilarsky C, Rachel U, Koch-Brandt C (1994) Gp80 (clusterin; TRPM-2) mRNA level is enhanced in human renal clear cell carcinomas. J Cancer Res Clin Oncol 120:186–188

    CAS  PubMed  Google Scholar 

  67. Prostate Cancer Trialists’ Collaborative Group (1995) Maximum androgen blockade in advanced prostate cancer: an overview of 22 randomised trials with 3283 deaths in 5710 patients. Lancet 346:265–269

    PubMed  Google Scholar 

  68. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R (1995) Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55:4438–4445

    CAS  PubMed  Google Scholar 

  69. Redondo M, Villar E, Torres-Munoz J, Tellez T, Morell M, Petito CK (2000) Overexpression of clusterin in human breast carcinoma. Am J Pathol 157:393–399

    CAS  PubMed  Google Scholar 

  70. Rennie PS, Bruchovsky N, Leco KJ, Sheppard PC, McQueen SA, Cheng H, Snoek R, Hamel A, Bock ME, MacDonald BS, Nickel BE, Chang C, Liao S, Cattini PA, Matusik RJ (1993) Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene. Mol Endocrinology 7:23–36

    CAS  Google Scholar 

  71. Rosenberg ME, Silkensen J (1995) Clusterin and the kidney. Exp Nephrol 3:9–14

    CAS  PubMed  Google Scholar 

  72. Rosenberg ME, Silkensen J (1995) Clusterin. Physiologic and pathophysiologic considerations. Int J Biochem Cell Biol 27:633–645

    CAS  PubMed  Google Scholar 

  73. Rosner W, Hryb DJ, Khan MS, et al (1999) Sex hormone-binding globulin mediates steroid hormone signal transduction at the plasma membrane. J Steroid Biochem Mol Biol 69:481–485

    Article  CAS  PubMed  Google Scholar 

  74. Ruizeveld de Winter JA, et al (1994) Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am J Pathol 144:735–746

    PubMed  Google Scholar 

  75. Schellhammer PF, Sharifi R, Block N, Soloway MS, Venner PM, Patterson AM, et al (1996) A controlled trial of bicalutamide vs flutamide, each in combination with LHRH analogue therapy, in patients with advanced prostate cancer. Cancer 78:2164–2169

    Article  CAS  PubMed  Google Scholar 

  76. Schultheiss D, Bloom DA, Wefer J, et al (2000) Tissue engineering from Adam to the zygote: historical reflections. World J Urol 18:84

    Article  CAS  PubMed  Google Scholar 

  77. Schultheiss D, Denil J, Jonas U (1997) Rejuvenation in the early 20th century. Andrologia 29:351

    CAS  PubMed  Google Scholar 

  78. Schwochau GB, Nath KA, Rosenberg ME (1998) Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties. Kidney Int 53:1647–1653

    Article  CAS  PubMed  Google Scholar 

  79. Sensibar JA, Sutkowski DM, Raffo A, Buttyan R, Griswold MD, Sylvester SR, Kozlowski JM, Lee C (1995) Prevention of cell death induced by tumor necrosis factor in a LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res 55:2431–2437

    CAS  PubMed  Google Scholar 

  80. Setchell BP (1990) The testis and tissue transplantation: historical aspects. J Reprod Immunol 18:1

    Article  CAS  Google Scholar 

  81. Shi Y, et al (2001) Her-2/neu expression in prostate cancer: high level of expression associated with exposure to hormone therapy and androgen independent disease. J Urol 166:1514–1519

    CAS  PubMed  Google Scholar 

  82. Signoretti S, et al (2000) Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst 92:1918–1925

    Article  CAS  PubMed  Google Scholar 

  83. Steinberg J, Oyasu R, Lang S, Sintich S, Rademaker A, Lee C, Kozlowski JM, Sensibar JA (1997) Intracellular levels of SGP-2 (Clusterin) correlate with tumor grade in prostate cancer. Clin Cancer Res 3:1701–1711

    Google Scholar 

  84. Suzuki H, et al (1996) Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 29:153–158

    CAS  PubMed  Google Scholar 

  85. Taplin ME, et al (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332:1393–1398

    CAS  Google Scholar 

  86. Taplin ME, et al (1999) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59:2511–2515

    CAS  PubMed  Google Scholar 

  87. Tatersall RB, Brown-Séquard CE (1994) double-hyphenated neurologist and forgotten father of endocrinology. Diabet Med 11:728

    PubMed  Google Scholar 

  88. Tenniswood MP, Guenette RS, Lakins J, Mooibroek M, Wong P, Welsh JE (1992) Active cell death in hormone-dependent tissues. Cancer Metastasis Rev 11:197–220

    CAS  PubMed  Google Scholar 

  89. The Leuprolide Study Group (1984) Leuprolide versus diethylstilbesterol for metastatic prostate cancer. N Engl J Med 311:1281–1286

    PubMed  Google Scholar 

  90. Thomas LN, Wright AS, Lazier CB, Cohen P, Rittmaster RS (2000) Prostatic involution in men taking finasteride is associated with elevated levels of insulin-like growth factor-binding proteins (IGFBPs)-2, -4, and -5. Prostate 42:203–210

    Article  CAS  PubMed  Google Scholar 

  91. Townsend MF, Sanders WH, Northway RO, et al (1997) Bone fractures associated with luteinizing hormone-releasing hormone agonists used in the treatment of prostatic carcinoma. Cancer 79:545–550

    Article  CAS  PubMed  Google Scholar 

  92. Tsai MJ, O’Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486

    CAS  PubMed  Google Scholar 

  93. Ueda T, Bruchovsky N, Sadar MD (2002) Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277:7076–7085

    Article  CAS  PubMed  Google Scholar 

  94. Veldscholte J, et al (1992) The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J Steroid Biochem Mol Biol 41:665–669

    Article  CAS  PubMed  Google Scholar 

  95. Visakorpi T, et al (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9:401–406

    CAS  PubMed  Google Scholar 

  96. Wellmann A, Thieblemont C, Pittaluga S, Sakai A, Jaffe ES, Siebert P, Raffeld M (2000) Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large-cell lymphomas. Blood 96:398–404

    CAS  PubMed  Google Scholar 

  97. Wen Y, et al (2000) HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 60:6841–6845

    CAS  PubMed  Google Scholar 

  98. Wilson CM, McPhaul MJ (1996) A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol Cell Endocrinol 120:51–57

    Article  CAS  PubMed  Google Scholar 

  99. Wilson MR, Easterbrook-Smith SB (2000) Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25:95–98

    Article  CAS  PubMed  Google Scholar 

  100. Yeh S, Chang C (1996) Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci U S A 93:5517–5521

    Article  CAS  PubMed  Google Scholar 

  101. Zhao XY, et al (2000) Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 6:703–706

    Article  CAS  PubMed  Google Scholar 

  102. Zhou BP, et al (2000) HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway. J Biol Chem 275:8027–8031

    CAS  PubMed  Google Scholar 

  103. Zhou H, et al (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151:483–494

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan I. So.

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, A.I., Hurtado-Coll, A. & Gleave, M.E. Androgens and prostate cancer. World J Urol 21, 325–337 (2003). https://doi.org/10.1007/s00345-003-0373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-003-0373-9

Keywords

Navigation