Skip to main content
Log in

3D conformation of a flexible fiber in a turbulent flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A growing number of studies is devoted to anisotropic particles in turbulent flows. In most cases, the particles are assumed to be rigid and their deformations are neglected. We present an adaptation of classical computer vision tools to reconstruct from two different images the 3D conformation of a fiber distorted by the turbulent fluctuations in a von Kármán flow. This technique allows us notably to characterize the fiber deformation by computing the correlation function of the orientation of the tangent vector. This function allows us to tackle the analogy between polymers and flexible fibers proposed by Brouzet et al. (Phys Rev Lett 112(7):074501, 2014). We show that this function depends on an elastic length \(\ell _\mathrm{e}\) which characterizes the particle flexibility, as is the case for polymers, but also on the fiber length L, contrary to polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bouguet JY (2004) Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/

  • Brouzet C, Verhille G, Le Gal P (2014) Flexible fiber in a turbulent flow: a macroscopic polymer. Phys Rev Lett 112(7):074501

    Article  Google Scholar 

  • Byron M, Einarsson J, Gustavsson K, Voth G, Mehlig B, Variano E (2015) Shape-dependence of particle rotation in isotropic turbulence. Phys Fluid 27:035101

    Article  Google Scholar 

  • Chari V, Sturm P (2009) Multi-view geometry of the refractive plane. In: Proceedings on British Machine Vision Conference

  • Chevillard L, Meneveau C (2013) Orientation dynamics of small triaxial-ellipsoidal particles in isotropic turbulence. J Fluid Mech 737:571–596

    Article  MathSciNet  MATH  Google Scholar 

  • Faugeras O, Luong QT, Papadopoulo T (2001) The geometry of multiple images. MIT Press, Cambridge

    Google Scholar 

  • Hartley RI, Sturm P (1997) Triangulation. Comput Vis Image Underst 68(2):146–157

    Article  Google Scholar 

  • Hartley RI, Zisserman A (2003) Multiple view geometry in computer vision. CUP, Cambridge

    MATH  Google Scholar 

  • Hinch E, Leal L (1979) Rotation of small non-axisymmetric particles in a simple shear flow. J Fluid Mech 92(3):591–608

    Article  MathSciNet  MATH  Google Scholar 

  • Jarecki L, Blonski S, Blim A, Zachara A (2012) Modeling of pneumatic melt spinning processes. J Appl Polym Sci 125:4402–4415

    Article  Google Scholar 

  • Jeffery G (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond A 102:131–179

    Article  Google Scholar 

  • Lee IK (2000) Curve reconstruction from unorganized points. Comput Aided Geom Des 17(2):161–177

    Article  MathSciNet  MATH  Google Scholar 

  • Longuet-Higgins H (1981) A computer program for reconstructing a scene from two projections. Nature 293:133–135

    Article  Google Scholar 

  • Lopez-Caballero M (2013) Large scales in a von Kármán swirling flow. Ph.D. Thesis, University of Navarra

  • Lundell F, Soderberg L, Alfredsson P (2011) Fluid mechanics of papermaking. Annu Rev Fluid Mech 43(1):195–217

    Article  MATH  Google Scholar 

  • Machicoane N, Zimmermann R, Fabiane L, Bourgoin M, Pinton JF, Volk R (2014) Large sphere motion in a nonhomogeneous turbulent flow. New J Phys 16(1):013,053

    Article  Google Scholar 

  • Machicoane N, Zimmermann R, Fabiane L, Bourgoin M, Pinton JF, Volk R (2014) Large sphere motions in a nonhomogeneous turbulent flow. New J Phys 16(1):013,053

    Article  Google Scholar 

  • Macnab R, Koshland D (1972) The gradient sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci USA 69:2509–2512

    Article  Google Scholar 

  • Maier-Hein L, Groch A, Bartoli A, Bodenstedt S, Boissonnat G, Chang PL, Clancy NT, Elson DS, Haase S, Heim E, Hornegger J, Jannin P, Kenngott H, Kilgus T, Müller-Stich B, Oladokun D, Röhl S, dos Santos TR, Schlemmer HP, Seitel A, Speidel S, Wagner M, Stoyanov D (2014) Comparative validation of single-shot optical techniques for laparoscopic 3D surface reconstruction. IEEE Trans Med Imaging 33(10):1913–1930

    Article  Google Scholar 

  • Marchioli C, Soldati A (2013) Rotation statistics of fibers in wall shear turbulence. Ata Mech 224:2311–2329

    MathSciNet  MATH  Google Scholar 

  • Marcus G, Parsa S, Kramel S, Ni R, Voth G (2014) Measurement of the solid body rotation of anisotropic particles in 3D turbulence. New J Phys 6:102,001

    Article  Google Scholar 

  • Marheineke N, Wegener R (2006) Fiber dynamics in turbulent flows: general modeling framework. SIAM J. Appl. Math. 66(5):1703–1726

    Article  MathSciNet  MATH  Google Scholar 

  • Miralles S, Bonnefoy N, Bourgoin M, Odier P, Pinton JF, Plihon N, Verhille G, Boisson J, Daviaud F, Dubrulle B (2013) Dynamo threshold detection in the von Kármán sodium experiment. Phys Rev E 88(1):013,002

    Article  Google Scholar 

  • Ouellette N, Xu H, Bourgoin M, Bodenschatz E (2006) Small-scale anisotropy in Lagrangian turbulence. New J Phys 8:102

    Article  Google Scholar 

  • Parsa S, Calzavarini E, Toschi F, Voth G (2012) Rotation rate of rods in turbulent fluid flow. Phys Rev Lett 109:134,501

    Article  Google Scholar 

  • Powers T (2010) Dynamics of filaments and membranes in a viscous fluid. Rev Mod Phys 82(2):1607

    Article  MathSciNet  Google Scholar 

  • Pumir A, Wilkinson M (2011) Orientation statistics of small particles in turbulence. New J Phys 13:093,030

    Article  Google Scholar 

  • Ravelet F (2005) Bifurcations globales hydrodynamiques et magnétohydrodynamiques dans un écoulement de von Kármán. Ph.D. thesis, CEA Saclay

  • Rousset B, Bonnay P, Diribarne P, Girard A, Poncet JM, Herbert E, Salort J, Baudet C, Castaing B, Chevillard L, Daviaud F, Dubrulle B, Gagne Y, Hébral MGB, Lehner T, Roche PE, Saint-Michel B, Mardion MB (2014) Superfluid high Reynolds von Kármán experiment. Rev Sci Inst 85:103,908

    Article  Google Scholar 

  • Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Annu Rev Fluid Mech 41:375–404

    Article  MathSciNet  MATH  Google Scholar 

  • Treibitz T, Schechner Y, Kunz C, Singh H (2012) Flat refractive geometry. IEEE Trans Pattern Anal Mach Intell 34(1):51–65

    Article  Google Scholar 

  • Trujilo-Pino A, Krissian K, Alemán-Flores M, Santana-Cedrés D (2013) Accurate subpixel edge location based on partial area effect. Image Vision Comput 31(1):72–90

    Article  Google Scholar 

  • Voth G, Porta AL, Crawford A, Alexander J, Bodenschatz E (2002) Measurement of particle accelerations in fully developed turbulence. J Fluid Mech 469:121

    Article  MATH  Google Scholar 

  • Yamakawa H (1971) Modern theory of polymer solutions. Harper and Row, New York

    Google Scholar 

  • Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF (2011) Tracking the dynamics of translation and absolute orientation of a sphere in a turbulent flow. Rev Sci Inst 82(3):033,906

    Article  Google Scholar 

Download references

Acknowledgments

This work has been carried out in the framework of the Labex MEC Project (No. ANR-10-LABX-0092), of the A*MIDEX Project (No. ANR-11-IDEX-0001-02), funded by the ‘Investissements d’Avenir’ French Government program managed by the French National Research Agency (ANR). A. Bartoli was funded by the FP7 ERC research Grant 307483. Authors want to thanks B. Favier and P. Le Gal for fruitful conversation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautier Verhille.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verhille, G., Bartoli, A. 3D conformation of a flexible fiber in a turbulent flow. Exp Fluids 57, 117 (2016). https://doi.org/10.1007/s00348-016-2201-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2201-1

Keywords

Navigation