Skip to main content
Log in

Desert ant navigation: how miniature brains solve complex tasks

  • Karl von Frisch Lecture
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

This essay presents and discusses the state of the art in studies of desert ant (Cataglyphis) navigation. In dealing with behavioural performances, neural mechanisms, and ecological functions these studies ultimately aim at an evolutionary understanding of the insect's navigational toolkit: its skylight (polarization) compass, its path integrator, its view-dependent ways of recognizing places and following landmark routes, and its strategies of flexibly interlinking these modes of navigation to generate amazingly rich behavioural outputs. The general message is that Cataglyphis uses path integration as an egocentric guideline to acquire continually updated spatial information about places and routes. Hence, it relies on procedural knowledge, and largely context-dependent retrieval of such knowledge, rather than on all-embracing geocentred representations of space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3.
Fig. 4A, B.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  • Åkesson S, Wehner R (1997) Visual snapshot memory of desert ants, Cataglyphis fortis. Proc Neurobiol Conf Göttingen 25:482

    Google Scholar 

  • Åkesson S, Wehner R (2002) Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference? J Exp Biol 205:1971–1978

    Google Scholar 

  • Allman JM (1999) Evolving brains. Scientific American Library, New York

  • Baerends GP (1941) Fortpflanzungsverhalten und Orientierung der Grabwespe Ammophila campestris. Tijdschr Entomol 84:68–275

    Google Scholar 

  • Basil JA, Kamil AC, Balda RP, Fite KV (1996) Differences in hippocampal volume among food storing corvids. Brain Behav Evol 47:156–164

    CAS  PubMed  Google Scholar 

  • Biegler R (2000) Possible use of path integration in animal navigation. Anim Learn Behav 28:257–277

    Google Scholar 

  • Biegler R, McGregor A, Krebs JR, Healy SD (2001) A larger hippocampus is associated with longer-lasting spatial memory. Proc Natl Acad Sci USA 98:6941–6944

    Article  CAS  PubMed  Google Scholar 

  • Bisch S, Wehner R (1998) Visual navigation in ants: evidence for site-based vectors. Proc Neurobiol Conf Göttingen 26:417

    Google Scholar 

  • Bisch S, Wehner R (1999) Context-dependent retrieval of local vectors in desert ants. Proc Neurobiol Conf Göttingen 27:429

    Google Scholar 

  • Bisch-Knaden S, Wehner R (2001) Egocentric information helps desert ants to navigate around familiar obstacles. J Exp Biol 204:4177–4184

    CAS  PubMed  Google Scholar 

  • Bisch-Knaden S, Wehner R (2003a) Local vectors in desert ants: context-dependent learning during outbound and inbound runs. J Comp Physiol A 189:181–187

    CAS  Google Scholar 

  • Bisch-Knaden S, Wehner R (2003b) Landmark memories are more robust when acquired at the nest site than en route. Experiments in desert ants. Naturwissenschaften 90:127–130

    CAS  PubMed  Google Scholar 

  • Brines ML (1978) Skylight polarization patterns as cues for honeybee orientation: physical measurements and behavioural experiments. PhD thesis, Rockefeller University, New York

    Google Scholar 

  • Brodbeck DR (1994) Memory for spatial and local cues: a comparison of a storing and a nonstoring species. Anim Learn Behav 22:119–133

    Google Scholar 

  • Colborn M, Ahmad-Annuar A, Fauria K, Collett TS (1999) Contextual modulation of visuomotor associations in bumble-bees (Bombus terrestris). Proc R Soc Lond Ser B 266:2413–2418

    Article  Google Scholar 

  • Collett M, Collett TS, Bisch S, Wehner R (1998) Local and global vectors in desert ant navigation. Nature 394:269–272

    Article  CAS  Google Scholar 

  • Collett M, Collett TS, Wehner R (1999) Calibration of vector navigation in desert ants. Curr Biol 9:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Baron J (1995) Learnt sensory-motor mappings in honeybees: interpolation and its possible relevance to navigation. J Comp Physiol A 177:287–298

    Google Scholar 

  • Collett TS, Fry SN, Wehner R (1993) Sequence learning by honeybees. J Comp Physiol A 172:693–706

    Google Scholar 

  • Collett TS, Collett M, Wehner R (2001) The guidance of desert ants by extended landmarks. J Exp Biol 204:1635–1639

    CAS  PubMed  Google Scholar 

  • Cornetz V (1910) Trajets de Fourmis et Retours au Nid. Paris: Institut Général Psychologique

  • Dyer FC, Gill M, Sharbowski J (2002) Motivation and vector navigation in honey bees. Naturwissenschaften 89:262–264

    Article  Google Scholar 

  • Fauria K, Dale K, Colborn M, Collett TS (2002) Learning speed and contextual isolation in bumblebees. J Exp Biol 205:1009–1018

    PubMed  Google Scholar 

  • Fent K (1985) Himmelsorientierung bei der Wüstenameise Cataglyphis bicolor: Bedeutung von Komplexaugen und Ocellen. PhD thesis, University of Zürich

  • Frisch K von (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148

    Google Scholar 

  • Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New York

  • Gallistel CR (2000) The replacement of general-purpose learning models with adaptively specialized learning modules. In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT Press, Cambridge, MA, pp 1179–1191

  • Gaulin SJC, FitzGerald RW (1989) Sexual selection for spatial learning ability. Anim Behav 37:322–331

    Google Scholar 

  • Gould JL, Dyer FC, Towne WF (1985) Recent progress in the study of the dance language. Fortschr Zool 31:141–161

    Google Scholar 

  • Grassé PP (1959) La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai d'interprétation du comportement des termites constructeurs. Insectes Soc 6:41–83

    Google Scholar 

  • Greggers U, Mauelshagen J (1997) Matching behavior of honeybees in a multiple-choice situation: the differential effect of environmental stimuli on the choice process. Anim Learn Behav 25:458–472

    Google Scholar 

  • Hartmann G, Wehner R (1995) The ant's path integration system: a neural architecture. Biol Cybern 73:483–497

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

  • Healy SD, Krebs JR (1996) Food storing and the hippocampus in Paridae. Brain Behav Evol 47:195–199

    CAS  PubMed  Google Scholar 

  • Hemmi JM, Zeil J (2003) Robust judgement of inter-object distance by an arthropod. Nature 421:160–163

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Würden S (1997) Movement-sensitive, polarization-sensitive and light-sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 386:329–346

    Article  CAS  PubMed  Google Scholar 

  • Jacobs LF, Gaulin SJC, Sherry DF, Hoffman GE (1990) Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proc Natl Acad Sci USA 87:6349–6352

    CAS  PubMed  Google Scholar 

  • Judd SPD, Collett TS (1998) Multiple stored views and landmark guidance in ants. Nature 392:710–714

    Article  CAS  Google Scholar 

  • Kirschfeld K (1972) Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z Naturforsch 27C:578–579

    Google Scholar 

  • Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437

    Article  Google Scholar 

  • Labhart T (1999) How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an opto-electronic model neurone. J Exp Biol 202:757–770

    PubMed  Google Scholar 

  • Labhart T (2000) Polarization-sensitive interneurons in the optic lobe of the desert ant Cataglyphis bicolor. Naturwissenschaften 87:133–136

    Article  CAS  PubMed  Google Scholar 

  • Labhart T, Lambrinos D (2001) How does the insect nervous system code celestial e-vector information? A neural model for "compass neurons". Proc Int Conf Invert Vis, p 66

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    Article  CAS  PubMed  Google Scholar 

  • Labhart T, Petzold J, Helbling H (2001) Spatial integration in polarization-sensitive interneurons of crickets: a survey of evidence, mechanisms and benefits. J Exp Biol 204:2423–2430

    CAS  PubMed  Google Scholar 

  • Lambrinos D, Möller R, Labhart T, Pfeifer R, Wehner R (2000) A mobile robot employing insect strategies for navigation. Robot Autonom Syst 30:39–64

    Article  Google Scholar 

  • Loesel R, Homberg U (2001) Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea madurae. J Comp Neurol 439:193–207

    Article  CAS  PubMed  Google Scholar 

  • Martin RD (1981) Relative brain size and metabolic rate in terrestrial vertebrates. Nature 293:57–60

    CAS  PubMed  Google Scholar 

  • McGregor A, Healy SD (1999) Spatial accuracy in food-storing and nonstoring birds. Anim Behav 58:727–734

    Article  PubMed  Google Scholar 

  • Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5:62–71

    PubMed  Google Scholar 

  • Menzel R, Geiger U, Müller J, Joerges J, Chittka L (1998) Bees travel novel homeward routes by integrating separately acquired vector memories. Anim Behav 55:139–152

    Google Scholar 

  • Menzel R, Brandt R, Gumbert A, Komischke B (2000) Two spatial memories for honeybee navigation. Proc R Soc Lond Ser B 267:961–968

    Article  CAS  Google Scholar 

  • Menzel R, Giurfa M, Gerber B, Hellstern F (2001) Cognition in insects: the honeybee as a study case. In: Roth G, Wullimann M (eds) Brain, evolution and cognition. Wiley, New York, pp 333–366

  • Müller M (1989) Mechanismus der Wegintegration bei Cataglyphis fortis (Hymenoptera, Insecta). PhD thesis, University of Zürich

  • Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290

    Google Scholar 

  • Petzold J (2001) Polarisationsempfindliche Neuronen im Sehsystem der Feldgrille Gryllus campestris: Elektrophysiologie, Anatomie und Modellrechnungen. PhD thesis, University of Zürich

    Google Scholar 

  • Pfeiffer K, Homberg U (2002) Visual signal processing in neurons of the anterior optic tubercle of the locust, Schistocerca gregaria. Zoology 105 [Suppl 5]:45

  • Pieron H (1904) Du rôle du sens musculaire dans l'orientation des fourmis. Bull Inst Gen Psychol Paris 4:168–186

    Google Scholar 

  • Pieron H (1912) Le problème de l'orientation envisagé chez les fourmis. Scientia 12:217–243

    Google Scholar 

  • Pomozi I, Horvath G, Wehner R (2001) How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. J Exp Biol 204:2933–2942

    CAS  PubMed  Google Scholar 

  • Reynaud G (1898) Les lois de l'orientation chez les animaux. Rev Mondes 148:380–402

    Google Scholar 

  • Riley JR, Smith AD (2002) Design considerations for an harmonic radar to investigate the flight of insects at low altitude. Comput Electron Agric 35:151–169

    Article  Google Scholar 

  • Robinson GE, Dyer FC (1993) Plasticity of spatial memory in honey-bees: reorientation following colony fission. Anim Behav 46:311–320

    Article  Google Scholar 

  • Rossel S, Wehner R (1984) How bees analyse the polarization patterns in the sky. Experiments and model. J Comp Physiol A 154:607–615

    Google Scholar 

  • Santschi F (1913) Comment s'orientent les fourmis. Rev Suisse Zool 21:347–426

    Google Scholar 

  • Sassi S, Wehner R (1997) Dead reckoning in desert ants, Cataglyphis fortis: can homeward-bound vectors be reactivated by familiar landmark configurations? Proc Neurobiol Conf Göttingen 25:484

    Google Scholar 

  • Sommer S, Wehner R (2003) How does the precision of the ant's odometer depend on the distances travelled? Proc Neurobiol Conf Göttingen 29:364–365

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

  • Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638

    Article  CAS  PubMed  Google Scholar 

  • Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125

    CAS  PubMed  Google Scholar 

  • Wang RF, Spelke ES (2002) Human spatial representation: insights from animals. Trends Cogn Sci 6:376–382

    Article  PubMed  Google Scholar 

  • Wehner R (1968) Optische Orientierungsmechanismen im Heimkehrverhalten von Cataglyphis bicolor (Formicidae, Hymenoptera). Rev Suisse Zool 75:1076–1085

    Google Scholar 

  • Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1-132

  • Wehner R (1987) Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert). In: JM Pasteels, J-L Deneubourg (eds) From individual to collective behavior in social insects. Birkhäuser, Basel, pp 15–42

  • Wehner R (1991) Visuelle Navigation: Kleinstgehirn-Strategien. Verh Dtsch Zool Ges 84:89–104

    Google Scholar 

  • Wehner R (1994) The polarization-vision project: championing organismic biology. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptation. Fischer, Stuttgart, pp 103–143

  • Wehner R, Flatt I (1972) The visual orientation of desert ants, Cataglyphis bicolor, by means of terrestrial cues. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 295–302

  • Wehner R, Rossel S (1985) The bee's celestial compass—a case study in behavioural neurobiology. Fortschr Zool 31:11–53

    Google Scholar 

  • Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery K (ed) Biological basis of navigation. Oxford University Press, Oxford (in press)

  • Wehner R, Strasser S (1985) The POL area of the honey bee's eye: behavioural evidence. Physiol Entomol 10:337–349

    Google Scholar 

  • Wehner R, Wehner S (1990) Insect navigation: use of maps or Ariadne's thread? Ethol Ecol Evol 2:27–48

    Google Scholar 

  • Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Akad Wiss Lit Mainz, Abh Math Naturwiss Kl. Fischer, Stuttgart

  • Wehner R, Bleuler S, Nievergelt C, Shah D (1990) Bees navigate by using vectors and routes rather than maps. Naturwissenschaften 77:479–482

    Google Scholar 

  • Wehner R, Fukushi T, Wehner S (1992) Rotatory components of movement in high speed desert ants, Cataglyphis bombycina. Proc Neurobiol Conf Göttingen 20:303

    Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    PubMed  Google Scholar 

  • Wehner R, Gallizzi K, Frei C, Vesely M (2002) Calibration processes in desert ant navigation: vector courses and systematic search. J Comp Physiol A 188:683–693

    CAS  Google Scholar 

Download references

Acknowledgements

I am very grateful indeed to my graduate students Simone Bühlmann, David Andel, Katja Selchow and Martin Kohler for providing the data shown in Figs. 1B, 2, 7A and B, respectively, and to Dr. Ursula Menzi for her skillful cooperation in designing the figures. Financial support came from the Swiss National Science Foundation, the Human Frontier Science Program (HFSP), and the G. and A. Claraz Foundation. All experiments complied with current Swiss legislation concerning animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wehner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189, 579–588 (2003). https://doi.org/10.1007/s00359-003-0431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0431-1

Keywords

Navigation