Skip to main content

Advertisement

Log in

New vistas on the initiation and maintenance of insect motor behaviors revealed by specific lesions of the head ganglia

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In insects, thoracic pattern generators are modulated by the two head ganglia, the supraesophageal ganglion (brain) and the subesophageal ganglion, which act as higher-order neuronal centers. To explore the contribution of each head ganglion to the initiation and maintenance of specific motor behaviors in cockroaches (Periplaneta americana), we performed specific lesions to remove descending inputs from either the brain or the subesophageal ganglion or both, and quantified the behavioral outcome with a battery of motor tasks. We show that ‘emergency’ behaviors, such as escape, flight, swimming or righting, are initiated at the thoracic level independently of descending inputs from the head ganglia. Yet, the head ganglia play a major role in maintaining these reflexively initiated behaviors. By separately removing each of the two head ganglia, we show that the brain excites flight behavior and inhibits walking-related behaviors, whereas the subesophageal ganglion exerts the opposite effects. Thus, control over specific motor behaviors in cockroaches is anatomically and functionally compartmentalized. We propose a comprehensive model in which the relative permissive versus inhibitory inputs descending from the two head ganglia, combined with thoracic afferent sensory inputs, select a specific thoracic motor pattern while preventing the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B-DINs:

Brain descending interneurons

CirC:

Circumesophageal connectives

Df:

Fast coxal depressors

DMI:

Descending mechanosensory interneuron

Ds:

Slow coxal depressors

EMG:

Electromyogram

PG:

Pattern generator

SEG:

Subesophageal ganglion

SEG-DINs:

SEG descending interneurons

References

  • Altman JS, Kien J (1987) Functional organization of the subesophageal ganglion in arthropods. In: Gupta A (ed) Arthropod brain: its evolution, development, structure, and functions. Wiley, New York, pp 265–301

    Google Scholar 

  • Arshavsky YI, Deliagina TG, Orlovsky GN (1997) Pattern generation. Curr Opin Neurobiol 7(6):781–789

    Article  PubMed  CAS  Google Scholar 

  • Bässler U (1983) Neural basis of elementary behavior in stick insects (studies of brain function). Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bässler U, Büschges A (1998) Pattern generation for stick insect walking movements—multisensory control of a locomotor program. Brain Res Rev 27:65–88

    Article  PubMed  Google Scholar 

  • Berkowitz A, Laurent G (1996) Local control of leg movements and motor patterns during grooming in locusts. J Neurosci 16:8067–8078

    PubMed  CAS  Google Scholar 

  • Bohm H, Schildberger K (1992) Brain neurons involved in the control of walking in the cricket Gryllus bimaculatus. J Exp Biol 166:113–130

    Google Scholar 

  • Briggman KL, Abarbanel HDI, Kristan WB (2005) Optical imaging of neuronal populations during decision-making. Science 307(5711):896–901

    Article  PubMed  CAS  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates. W. H. Freeman and Co, San Francisco

    Google Scholar 

  • Burdohan JA, Comer CM (1996) Cellular organization of an antennal mechanosensory pathway in the cockroach, Periplaneta americana. J Neurosci 16(18):5830–5843

    PubMed  CAS  Google Scholar 

  • Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93:1127–1135

    Article  PubMed  Google Scholar 

  • Camhi JM (1984) Neuroethology: nerve cells and natural behavior of animals. Chapter 4: A case study in neuroethology: the escape system of the cockroach. Sinauer Associates Inc., Sunderland, pp 79–105

  • Camhi JM, Levi A (1988) Organization of a complex movement: fixed and variable components of the cockroach escape behavior. J Comp Physiol A 163(3):317–328

    Article  PubMed  CAS  Google Scholar 

  • Carbonell CS (1947) The thoracic muscles of the cockroach Periplaneta americana. Smithson Misc Collect 107:1–23

    Google Scholar 

  • Cocatre-Zilgien JH, Delcomyn F (1990) Fast axon activity and the motor pattern in cockroach legs during swimming. Physiol Entomol 15(4):385–392

    Google Scholar 

  • Cornford A, Kristan WB, Malnove S, Kristan WBJ, French KA (2006) Functions of the subesophageal ganglion in the medicinal leech revealed by ablation of neuromeres in embryos. J Exp Biol 209:493–503

    Article  PubMed  Google Scholar 

  • Cruse H, Kühn S, Park S, Schmitz J (2004) Adaptive control for insect leg position: controller properties depend on substrate compliance. J Comp Physiol A 190:983–991

    Article  CAS  Google Scholar 

  • Delcomyn F (1991) Perturbation of the motor system in freely walking cockroaches. II. The timing of motor activity in leg muscles after amputation of a middle leg. J Exp Biol 156:503–517

    PubMed  CAS  Google Scholar 

  • Delcomyn F, Usherwood PNR (1973) Motor activity during walking in the cockroach Periplaneta americana. I. Free walking. J Exp Biol 59:629–942

    Google Scholar 

  • Deliagina TG, Zelenin PV, Grigori N, Orlovsky GN (2002) Encoding and decoding of reticulospinal commands. Brain Res Rev 40:166–177

    Article  PubMed  Google Scholar 

  • Dickinson MH, Hannaford S, Palka J (1997) The evolution of insect wings and their sensory apparatus. Brain Behav Evol 50(1):13–24

    PubMed  CAS  Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288(5463):100–106

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol 114(8):1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Dominick OS, Truman JW (1986) The physiology of wandering behavior in Manduca sexta. III. Organization of wandering behavior in the larval nervous system. J Exp Biol 121:115–132

    PubMed  CAS  Google Scholar 

  • Duysens J, Clarac F, Cruse H (2000) Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80(1):83–133

    PubMed  CAS  Google Scholar 

  • Eaton RC, Farley RD (1969) The neural control of cercal grooming behaviour in the cockroach, Periplaneta americana. J Insect Physiol 15:1047–1065

    Article  PubMed  CAS  Google Scholar 

  • Frye MA, Dickinson MH (2004) Closing the loop between neurobiology and flight behavior in Drosophila. Curr Opin Neurobiol 14(6):729–736

    Article  PubMed  CAS  Google Scholar 

  • Full RJ, Yamauchi A, Jindrich DL (1995) Maximum single leg force production: cockroaches righting on photoelastic gelatin. J Exp Biol 198:2441–2452

    PubMed  Google Scholar 

  • Graham D (1979) Effects of circum-oesophageal lesion on the behavior of the stick insect Carausius morosus. II. Changes in walking co-ordination. Biol Cybern 32:147–152

    Article  Google Scholar 

  • Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Wallen P (2002) Cellular bases of a vertebrate locomotor system-steering, intersegmental and segmental co-ordination and sensory control. Brain Res Rev 40:92–106

    Article  PubMed  Google Scholar 

  • Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs—roles for the striatum and pallidum, Trends Neurosci 28:364–370

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R (2002) Impact of descending brain neurons on the control of stridulation, walking, and flight in orthoptera. Microsc Res Tech 56(4):292–301

    Article  PubMed  Google Scholar 

  • Heinrich R, Rozwod K, Elsner N (1998) Neuropharmacological evidence for inhibitory cephalic control mechanisms of stridulatory behaviour in grasshoppers. J Comp Physiol A 183:389–399

    Article  CAS  Google Scholar 

  • Hoyle G (1976) Arthropod walking. In: Herman RM, Grillner S, Stein PSG, Stuart DG (eds) Neural control of locomotion. Plenum Press, New York, pp 137–179

    Google Scholar 

  • Hughes GM (1965) Neuronal pathways in the insect central nervous system. In: Treherne JE, Beaments JWL (eds) The physiology of the insect central nervous system. Academic, New York, pp 79–112

    Google Scholar 

  • Johnston RM, Consoulas C, Pflueger H, Levine RB (1999) Patterned activation of unpaired median neurons during fictive crawling in Manduca sexta larvae. J Exp Biol 202(2):103–113

    PubMed  Google Scholar 

  • Keegan AP, Comer CM (1993) The wind-elicited escape response of cockroaches (Periplaneta americana) is influenced by lesions rostral to the escape circuit. Brain Res 620:310–316

    Article  PubMed  CAS  Google Scholar 

  • Kien J (1983) The initiation and maintenance of walking in the locust: an alternative to the command concept. Proc R Soc Lond B Biol 219:137–174

    Article  Google Scholar 

  • Kien J (1990a) Neuronal activity during spontaneous walking. I. Starting and stopping. Comp Biochem Physiol A 95:607–621

    Article  CAS  Google Scholar 

  • Kien J (1990b) Neuronal activity during spontaneous walking. II. Correlation with stepping. Comp Biochem Physiol A 95:623–638

    Article  CAS  Google Scholar 

  • Kien J, Altman JS (1984) Descending interneurones from the brain and suboesophageal ganglia and their role in control of locust behaviour. J Insect Physiol 30(1):59–72

    Article  Google Scholar 

  • Kien J, Altman JS (1992a) Decision-making in the insect nervous system: a model for selection and maintenance of motor programmes. In: Kien J, McCrohan CR, Winlow W (eds) Neurobiology of motor programme selection. Pergamon Press, Oxford. Pergamon studies in neuroscience, no. 4, pp 147–169

  • Kien J, Altman JS (1992b) Preparation and execution of movement: parallels between insect and mammalian motor systems. Comp Biochem Physiol A 103(1):15–24

    Article  CAS  Google Scholar 

  • Kien J, Fletcher JS, Altman J, Ramirez M, Roth U (1990) Organization of intersegmental interneurons in the suboesophageal ganglion of Schistocerca gregaria (Forskal) and Locusta migratoria migratorioides (Reiche & Fairmaire) (Acrididae, Orthoptera). Int J Insect Morphol Embryol 19(1):35–60

    Article  Google Scholar 

  • Kien J, McCrohan CR, Winlow W (eds) (1992) Neurobiology of motor programme selection. Pergamon Press, Oxford. Pergamon studies in neuroscience, no. 4

  • Knop G, Denzer L, Buschages A (2001) A central pattern-generating network contributes to “reflex-reversal”-like leg motoneuron activity in the locust. . J Neurophysiol 86(6):3065–3068

    PubMed  CAS  Google Scholar 

  • Larsen GS, Frazier SF, Fish SE, Zill SN (1995) Effects of load inversion in cockroach walking. J Comp Physiol A 176(2):229–238

    Article  PubMed  CAS  Google Scholar 

  • Libersat F (1994) The dorsal giant interneurons mediate evasive behavior in flying cockroaches. J Exp Biol 197:405–411

    PubMed  CAS  Google Scholar 

  • Libersat F, Pflueger HJ (2004) Monoamines and the orchestration of behavior. Bioscience 54(1):17–25

    Article  Google Scholar 

  • Libersat F, Haspel G, Casagrand J, Fouad K (1999) Localization of the site of effect of a wasp’s venom in the cockroach escape circuitry. J Comp Physiol A 184:333–345

    Article  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:986–996

    Article  Google Scholar 

  • Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15(17):685–99

    Article  CAS  Google Scholar 

  • Matheson T (1997) Hindleg targeting during scratching in the locust. J Exp Biol 200(1):93–100

    PubMed  Google Scholar 

  • Matsumoto Y, Sakai M (2000) Brain control of mating behavior in the male cricket Gryllus bimaculatus DeGeer: the center for inhibition of copulation actions. J Insect Physiol 46(4):527–538

    Article  PubMed  CAS  Google Scholar 

  • Noah JA, Quimby L, Frazier SF, Zill SN (2004) Walking on a ‘peg leg’: extensor muscle activities and sensory feedback after distal leg denervation in cockroaches. J Comp Physiol A 190:217–231

    Article  CAS  Google Scholar 

  • Okada R, Sakura M, Mizunami M (2003) Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain. J Comp Neurol 458(2):158–174

    Article  PubMed  Google Scholar 

  • Page KL, Matheson T (2004) Wing hair sensilla underlying aimed hindleg scratching of the locust. J Exp Biol 207(15):2691–2703

    Article  PubMed  Google Scholar 

  • Pearson KG (1972) Central programming and reflex control of walking in the cockroach. J Exp Biol 56:173–193

    Google Scholar 

  • Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123–129

    PubMed  Google Scholar 

  • Pearson KG, Iles JF (1970) Discharge patterns of coxal levator and depressor motoneurones of the cockroach, Periplaneta americana. J Exp Biol 52:139–165

    PubMed  CAS  Google Scholar 

  • Pearson KG, Iles JF (1973) Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. J Exp Biol 58:725–744

    Google Scholar 

  • Reingold SC, Camhi JM (1977) A quantitative analysis of rhythmic leg movements during three different behaviors in the cockroach, Periplaneta americana. J Insect Physiol 23:1407–1420

    Article  Google Scholar 

  • Ridgel AL, Ritzmann RE (2005) Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach. J Comp Physiol A 191(6):559–573

    Article  Google Scholar 

  • Ritzmann RE, Tobias ML, Fourtner CR (1980) Flight activity initiated via giant interneurons of the cockroach: evidence for bifunctional trigger interneurons. Science 210:443–445

    PubMed  Google Scholar 

  • Ritzmann RE, Pollack AJ, Tobias ML (1982) Flight activity mediated by intracellular stimulation of dorsal giant interneurons of the cockroach Periplaneta americana. J Comp Physiol A 147:313–322

    Article  Google Scholar 

  • Roeder KD (1937) The control of tonus and locomotor activity in the praying mantis, Mantis religiosa L. J Exp Zool 76:353–374

    Article  Google Scholar 

  • Roeder KD (1948) Organization of the ascending giant fiber system in the cockroach (Periplaneta americana). J Exp Zool 108:243–261

    Article  PubMed  CAS  Google Scholar 

  • Roeder KD (1963) Nerve cells and insect behavior. Harvard University Press, Cambridge, p 238

    Google Scholar 

  • Roeder KD, Tozian L, Weiant E (1960) Endogenous nerve activity and behaviour in the mantis and cockroach. J Insect Physiol 4:45–62

    Article  Google Scholar 

  • Schaefer P, Ritzmann RE (2001) Descending influences on escape behavior and motor pattern in the cockroach. J Neurobiol 49(1):9–28

    Article  PubMed  CAS  Google Scholar 

  • Schaefer PL, Kondagunta GV, Ritzmann RE (1994) Motion analysis of escape movements evoked by tactile stimulation in the cockroach Periplaneta americana. J Exp Biol 190:287–294

    PubMed  CAS  Google Scholar 

  • Sherman E, Novotny M, Camhi J (1977) A modified walking rhythm employed during righting behavior in the cockroach Gromphadorhina portentosa. J Comp Physiol A 113:303–316

    Article  Google Scholar 

  • Strausfeld NJ (1999) A brain region in insects that supervises walking. Prog Brain Res 123:273–84

    Article  PubMed  CAS  Google Scholar 

  • Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12(6):633–638

    Article  PubMed  CAS  Google Scholar 

  • Strauss R, Heisenberg M (1993) A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 13:1852–1861

    PubMed  CAS  Google Scholar 

  • Svidersky VL, Plotnikova SI (2002) Insects and vertebrates: analogous structures in higher integrative centers of the brain. J Evol Biochem Phys 38(5):627–639

    Article  CAS  Google Scholar 

  • Watson JT, Ritzmann RE (1998) Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running. J Comp Physiol A 182(1):11–22

    Article  PubMed  CAS  Google Scholar 

  • Whelan PJ (1996) Control of locomotion in the decerebrate cat. Prog Neurobiol 49:481–515

    Article  PubMed  CAS  Google Scholar 

  • Wilson DM (1961) The central nervous control of flight in a locust. J Exp Biol 38:471–490

    Google Scholar 

  • Wilson DM (1967) Central nervous mechanisms for the generation of rhythmic behavior in arthropods. Symp Soc Exp Biol 47:133–151

    Google Scholar 

  • Zill SN (1986) A model of pattern generation of cockroach walking reconsidered. J Neurobiol 17(4):317–328

    Article  PubMed  CAS  Google Scholar 

  • Zill SN, Schmitz J, Büschges A (2004) Load sensing and control of posture and locomotion. Arthropod Struct Dev 33:273–286

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gustavo Glusman for his valuable technical assistance. We also thank Aviva Weisel-Eichler, Lior Ann Rosenberg, Yael Lavi, Gal Haspel and two anonymous reviewers for valuable comments. This work was supported by Grant 2001044 from the United States-Israel Binational Science Foundation (BSF). These experiments comply with the “Principles of animal care”, publication No. 86–23, revised 1985 of the National Institute of Health, and also with the current laws of the State of Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Libersat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gal, R., Libersat, F. New vistas on the initiation and maintenance of insect motor behaviors revealed by specific lesions of the head ganglia. J Comp Physiol A 192, 1003–1020 (2006). https://doi.org/10.1007/s00359-006-0135-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0135-4

Keywords

Navigation