Skip to main content

Advertisement

Log in

Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The central complex (CC) is a group of midline neuropils in the protocerebrum of all insects (Williams, J Zool, 176:67–86, 1975; Strausfeld, Prog Brain Res, 123:273–284, 1999). Its columnar organization coupled with the anatomical tracts to and from this region suggests that the CC may supervise various forms of locomotion. In cockroach, lesions of the CC affect turning and controlled climbing over blocks (Ridgel et al., J Comp Physiol A, 193:385–402, 2007). Since these behaviors are largely directed by tactile cues detected by antennae, we predicted that some neurons in the CC respond to mechanical antennal stimulation. We used 16-channel probes to record from broad regions within the CC, while mechanically stimulating one or the other antenna. Using cluster cutting procedures, we examined 277 units in 31 preparations. Many of these units responded to mechanical stimulation of the antennae, and of these, most responded equally well to medial or lateral stimulation of either antenna. However, several units either responded to only one antenna or responded significantly more strongly to one of them. Most of the units responding to antennal stimulation were sensitive to changes in the velocity as well as changes in light. Our data reveal a large population of mult-sensory neurons in the CC that could contribute to locomotion control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CC:

Central complex

SOG:

Suboesophageal ganglion

FB:

Fan-shaped body

EB:

Ellipsoid body

PB:

Protocerebral bridge

References

  • Briggman KL, Abarbanel HDI, Kristan WB Jr (2005) Optical imaging of neuronal populations during decision-making. Science 307:896–901

    Article  PubMed  CAS  Google Scholar 

  • Camhi JM, Johnson EN (1999) High-frequency steering maneuvers mediated by tactile cues: antennal wall-following in the cockroach. J Exp Biol 202:631–643

    PubMed  CAS  Google Scholar 

  • Daly K, Wright G, Smith B (2004) Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth, Manduca sexta. J Neurophsyiol 92:236–254

    Article  Google Scholar 

  • DiCarlo J, Lane J, Hsiao S, Johnson K (1996) Marking microelectrode penetrations with fluorescent dyes. J Neuorsci Meth 64:75–81

    Article  CAS  Google Scholar 

  • Graham D (1979) Effects of Circum-oesophageal lesion on the behaviour of the stick insect Carausius morosus. II. Changes in walking co-ordination. Biol Cybernet 32:147–152

    Article  Google Scholar 

  • Gray C, Maldonado P, Wilson M, McNaughton B (1995) Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Meth 63:43–54

    Article  CAS  Google Scholar 

  • Harley CM, Lewinger WA, Ritzmann RE, Quinn RD (2005) Characterization of obstacle avoidance behaviors in the cockroach Blaberus discoidalis and implementation in a semi-autonomous robot. Soc Neuroci Abstr CD ROM 31:176.10

    Google Scholar 

  • Harley CM, Predina J, Ritzmann RE (2006) Responses to incomplete sensory information in cockroach climbing behavior. Soc Neurosci Abstr CDROM 32:449.12

    Google Scholar 

  • Heinze S, Homberg U (2007) Maplike representation of celestial e-vector orientations in the brain of an insect. Science 315:995–997

    Article  PubMed  CAS  Google Scholar 

  • Homberg U (1987) Structure and functions of the central complex in insects. In: Gupta AP (eds) Arthropod brain: its evolution, development, structure and functions. Wiley, New York, pp 347–367

    Google Scholar 

  • Honegger H-W, Campan R (1981) A preliminary note on a new optomoter response in crickets: antennal tracking of moving targets. J Comp Physiol A 142:419–421

    Article  Google Scholar 

  • Huber F (1960) Untersuchungen über die funktion des zentralnervensystems und insbesondere des gehirns bei der fortbewegung und lauterzeugung der grillen. Zeit Vergleich Physiol 44:60–132

    Article  Google Scholar 

  • Kristan WB, Gillette R (2007) Behavioral choice. In: North G, Greenspan RJ (eds) Invertebrate neurobiology. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 533–553

    Google Scholar 

  • Kristan WB Jr, Shaw BK (1997) Population coding and behavioral choice. Curr Opin Neurobiol 7:826–831

    Article  PubMed  Google Scholar 

  • Kwon H-W, Lent DD, Strausfeld NJ (2004) Spatial learning in the restrained American cockroach Periplaneta americana. J Exp Biol 207:377–383

    Article  PubMed  Google Scholar 

  • Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–360

    Article  PubMed  CAS  Google Scholar 

  • Lent DD, Kwon H-K (2004) Antennal movements reveal associative learning in the American cockroach Periplaneta americana. J Exp Biol 207:369–375

    Article  PubMed  Google Scholar 

  • Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556

    Article  PubMed  CAS  Google Scholar 

  • Martin J, Raabe T, Heisenberg M (1999) Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J Comp Phyiol A 185:277–288

    Article  CAS  Google Scholar 

  • McNaughton B, O’Keefe J, Barnes C (1983) The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Meth 8:391–397

    Article  CAS  Google Scholar 

  • Mu L, Ritzmann RE (2005) Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis. J Comp Physiol A 191:1037–1054

    Article  Google Scholar 

  • Nishino H, Nishikawa M, Yokohari F, Mizunami M (2005) Dual, multilayered somatosensory maps formed by antennal tactile and contact chemosensory afferents in an insect brain. J Comp Neurol 493:291–308

    Article  PubMed  Google Scholar 

  • Okada J, Toh Y (2000) The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana). J Comp Physiol A 186:849–857

    Article  PubMed  CAS  Google Scholar 

  • Okada J, Toh Y (2004) Spatio-temporal patterns of antennal movements in the searching cockroach. J Exp Biol 207:3693–3706

    Article  PubMed  Google Scholar 

  • Okada J, Toh Y (2006) Active tactile sensing for localization of objects by the cockroach antenna. J Comp Physiol A 192:715–726

    Article  Google Scholar 

  • Ridgel AL, Alexander BE, Ritzmann RE (2007) Descending control of turning behavior in the cockroach, Blaberus discoidalis. J Comp Physiol A 193:385–402

    Article  Google Scholar 

  • Ridgel AL, Ritzmann RE (2005) Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach. J Comp Physiol A 191:559–573

    Article  Google Scholar 

  • Ritzmann RE, Pollack AJ, Archinal J, Ridgel AL, Quinn RD (2005) Descending control of body attitude in the cockroach Blaberus discoidalis and its role in incline climbing. J Comp Physiol A 191:253–264

    Article  Google Scholar 

  • Roeder K (1937) The control of tonus and locomotor activity in the praying mantis (Mantis religiosa L.). J Exp Biol 76:353–374

    Google Scholar 

  • Saager F, Gewecke M (1989) Antennal reflexes in the desert locust Schistocerca gregaria. J Exp Biol 147:519–532

    Google Scholar 

  • Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci 8:2913–2927

    PubMed  CAS  Google Scholar 

  • Staudacher EM, Gebhardt M, Dürr V (2005) Antennal movements and mechanoreception: Neurobiology of active tactile sensors. Adv Insect Physiol 32:49–205

    Article  CAS  Google Scholar 

  • Strausfeld NJ (1999) A brain region in insects that supervises walking. Prog Brain Res 123:273–284

    Article  PubMed  CAS  Google Scholar 

  • Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638

    Article  PubMed  CAS  Google Scholar 

  • Strauss R, Hanesch U, Kinkelin M, Wolf R, Heisenberg M (1992) No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. J Neurogenet 8:125–155

    Article  PubMed  CAS  Google Scholar 

  • Vitzthum H, Muller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125

    PubMed  CAS  Google Scholar 

  • Watson JT, Ritzmann RE, Zill SN, Pollack AJ (2002) Control of obstacle climbing in the cockroach, Blaberus discoidalis I. Kinematics. J Comp Physiol A 188:39–53

    Article  Google Scholar 

  • Westin J, Langberg JJ, Camhi JM (1977) Responses of giant interneurons of the cockroach Periplaneta americana to wind puffs of different directions and velocities. J Comp Physiol A 121:307–324

    Article  Google Scholar 

  • Williams JLD (1975) Anatomical studies of the insect nervous system: a ground plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool 176:67–86

    Article  Google Scholar 

  • Ye S, Leung V, Khan A, Baba Y, Comer CM (2003) The antennal system and cockroach evasive behavior. I. Roles for visual and mechanosensory cues in the response. J Comp Physiol A 189:89–96

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Kevin C. Daly for help in learning the multi-unit recording procedures and Drs John Bender and Joanne Westin as well as two anonymous reviewers for critically reviewing the manuscript. This material is based upon work supported by the National Science Foundation under Grant No. 0516587 to RER. The experiments described in this paper comply with the “Principles of animal care”, publication No. 86-23, revised 1985 of the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy E. Ritzmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritzmann, R.E., Ridgel, A.L. & Pollack, A.J. Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis . J Comp Physiol A 194, 341–360 (2008). https://doi.org/10.1007/s00359-007-0310-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-007-0310-2

Keywords

Navigation