Skip to main content

Advertisement

Log in

Friction ridges in cockroach climbing pads: anisotropy of shear stress measured on transparent, microstructured substrates

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The contact of adhesive structures to rough surfaces has been difficult to investigate as rough surfaces are usually irregular and opaque. Here we use transparent, microstructured surfaces to investigate the performance of tarsal euplantulae in cockroaches (Nauphoeta cinerea). These pads are mainly used for generating pushing forces away from the body. Despite this biological function, shear stress (force per unit area) measurements in immobilized pads showed no significant difference between pushing and pulling on smooth surfaces and on 1-μm high microstructured substrates, where pads made full contact. In contrast, on 4-μm high microstructured substrates, where pads made contact only to the top of the microstructures, shear stress was maximal during a push. This specific direction dependence is explained by the interlocking of the microstructures with nanometre-sized “friction ridges” on the euplantulae. Scanning electron microscopy and atomic force microscopy revealed that these ridges are anisotropic, with steep slopes facing distally and shallow slopes proximally. The absence of a significant direction dependence on smooth and 1-μm high microstructured surfaces suggests the effect of interlocking is masked by the stronger influence of adhesion on friction, which acts equally in both directions. Our findings show that cockroach euplantulae generate friction using both interlocking and adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbero DR, Saifullah MSM, Hoffmann P, Mathieu HJ, Anderson D, Jones GAC, Welland ME, Steiner U (2007) High resolution nanoimprinting with a robust and reusable polymer mold. Adv Funct Mater 17:2419–2425

    Article  CAS  Google Scholar 

  • Barnes WJP (2007) Functional morphology and design constraints of smooth adhesive pads. MRS Bull 32:479–485

    CAS  Google Scholar 

  • Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). J Exp Biol 205:1097–1113

    PubMed  Google Scholar 

  • Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177–207

    Article  Google Scholar 

  • Beutel RG, Gorb SN (2006) A revised interpretation of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthropod Syst Phylogeny 64:3–25

    Google Scholar 

  • Bullock JMR, Federle W (2009) Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: effective elastic modulus and attachment performance. J Exp Biol 212:1878–1888

    Article  Google Scholar 

  • Bullock JMR, Drechsler P, Federle W (2008) Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol 211:3333–3343

    Article  PubMed  Google Scholar 

  • Busscher HJ, Van Pelt AWJ, De Boer P, De Jong HP, Arends J (1984) The effect of surface roughening of polymers on measured contact angles of liquids. Colloids Surf 9:319–331

    Article  CAS  Google Scholar 

  • Chan EP, Smith EJ, Hayward RC, Crosby AJ (2008) Surface wrinkles for smart adhesion. Adv Mater 20:711–716

    Article  CAS  Google Scholar 

  • Chung JY, Chaudhury MK (2005) Roles of discontinuities in bio-inspired adhesive pads. J R Soc Interface 2:55–61

    Article  PubMed  Google Scholar 

  • Clemente CJ, Federle W (2008) Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches. Proc R Soc Lond B Biol Sci 275:1329–1336

    Article  Google Scholar 

  • Dai Z, Gorb SN, Schwarz U (2002) Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 205:2479–2488

    PubMed  Google Scholar 

  • Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192:1213–1222

    Article  Google Scholar 

  • Endlein T, Federle W (2008) Walking on smooth or rough ground: passive control of pretarsal attachment in ants. J Comp Physiol A 194:49–60

    Article  Google Scholar 

  • Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106

    Article  Google Scholar 

  • Federle W, Barnes WJP, Baumgartner W, Drechsler P, Smith JM (2006) Wet but not slippery: boundary friction in tree frog adhesive toe pads. J R Soc Interface 3:689–697

    Article  PubMed  CAS  Google Scholar 

  • Frazier SF, Larsen GS, Neff D, Quimby L, Carney M, DiCaprio RA, Zill SN (1999) Elasticity and movements of the cockroach tarsus in walking. J Comp Physiol A 185:157–172

    Article  Google Scholar 

  • Full RJ, Blickhan R, Ting LH (1991) Leg design in hexapedal runners. J Exp Biol 158:369–390

    PubMed  CAS  Google Scholar 

  • Fuller KNG, Tabor D (1975) The effect of surface roughness on the adhesion of elastic solids. Proc R Soc Lond A 345:327–342

    Article  Google Scholar 

  • Ghatak A, Mahadevan L, Yun J, Chaudhury M, Shenoy V (2004) Peeling from a biomimetically patterned thin elastic film. Proc R Soc Lond A 460:2725–2735

    Article  Google Scholar 

  • Glassmaker NJ, Jagota A, Hui C-Y (2005) Adhesion enhancement in a biomimetic fibrillar interface. Acta Biomater 1:367–375

    Article  PubMed  Google Scholar 

  • Gorb S (2001) Attachment devices of insect cuticle. Kluwer, Dordrecht

    Google Scholar 

  • Gorb SN (2008) Smooth attachment devices in insects. In: Casas J, Simpson SJ (eds) Advances in insect physiology, vol 34. Academic Press, London, pp 81–116

    Google Scholar 

  • Gorb S, Jiao Y, Scherge M (2000) Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae). J Comp Physiol A 186:821–831

    Article  PubMed  CAS  Google Scholar 

  • Gorb S, Gorb E, Kastner V (2001) Scale effects on the attachment pads and friction forces in syrphid flies. J Exp Biol 204:1421–1431

    PubMed  CAS  Google Scholar 

  • Green DM (1981) Adhesion and the toe pads of tree frogs. Copeia 1981:790–796

    Article  Google Scholar 

  • Grosch KA (1963) The relation between the friction and visco-elastic properties of rubber. Proc R Soc Lond A 274:21–39

    Article  CAS  Google Scholar 

  • Huber G, Gorb SN, Hosoda N, Spolenak R, Arzt E (2007) Influence of surface roughness on gecko adhesion. Acta Biomater 3:607–610

    Article  PubMed  Google Scholar 

  • Hui CY, Lin YY, Baney JM, Kramer EJ (2001) The mechanics of contact and adhesion of periodically rough surfaces. J Polym Sci B Polym Phys 39:1195–1214

    Article  CAS  Google Scholar 

  • Hui C-Y, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1:35–48

    Article  PubMed  Google Scholar 

  • Hui C-Y, Glassmaker NJ, Jagota A (2005) How compliance compensates for surface roughness in fibrillar adhesion. J Adhes 81:699–721

    Article  CAS  Google Scholar 

  • Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140–1145

    Article  Google Scholar 

  • Jiao Y, Gorb S, Scherge M (2000) Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J Exp Biol 203:1887–1895

    PubMed  CAS  Google Scholar 

  • Jones RAL, Richards RW (1999) Polymers at surfaces and interfaces. Cambridge University Press, Cambridge

  • Kendall K (2001) Molecular adhesion and its applications. Kluwer, Dordrecht

    Google Scholar 

  • Kim TW, Bhushan B (2007) Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J Adhes Sci Technol 21:1–20

    Article  CAS  Google Scholar 

  • Lees AD, Hardie J (1988) The organs of adhesion in the aphid Megoura viciae. J Exp Biol 136:209–228

    Google Scholar 

  • Peressadko AG, Hosoda N, Persson BNJ (2005) Influence of surface roughness on the adhesion between elastic bodies. Phys Rev Lett 95:124301–124304

    Article  PubMed  CAS  Google Scholar 

  • Persson BNJ (1998) On the theory of rubber friction. Surf Sci 401:445–454

    Article  CAS  Google Scholar 

  • Persson BNJ (2007a) Biological adhesion for locomotion on rough surfaces: basic principles and a theorist’s view. MRS Bull 32:486–490

    CAS  Google Scholar 

  • Persson BNJ (2007b) Wet adhesion with application to tree frog adhesive toe pads and tires. J Phys Condens Matter 19:376110

    Article  Google Scholar 

  • Persson BNJ, Gorb S (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437–11444

    Article  CAS  Google Scholar 

  • Roth LM, Willis ER (1952) Tarsal structure and climbing ability of cockroaches. J Exp Zool 119:483–517

    Article  Google Scholar 

  • Russell TP (1990) X-ray and neutron reflectivity for the investigation of polymers. Mater Sci Rep 5:171–271

    Article  CAS  Google Scholar 

  • Santos R, Gorb S, Jamar V, Flammang P (2005) Adhesion of echinoderm tube feet to rough surfaces. J Exp Biol 208:2555–2567

    Article  PubMed  Google Scholar 

  • Scherge M, Gorb SN (2001) Biological micro- and nanotribology: nature’s solutions. Springer, Berlin

    Google Scholar 

  • Scholz I, Barnes WJP, Smith JM, Baumgartner W (2009) Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White. J Exp Biol 212:155–162

    Article  PubMed  Google Scholar 

  • Schulmeister S (2003) Morphology and evolution of the tarsal plantulae in Hymenoptera (Insecta), focussing on the basal lineages. Zool Scr 32:153–172

    Article  Google Scholar 

  • Smith JM, Barnes WJP, Downie JR, Ruxton GD (2006) Structural correlates of increased adhesive efficiency with adult size in the toe pads of hylid tree frogs. J Comp Physiol A 192:1193–1204

    Article  Google Scholar 

  • Spagna JC, Goldman DI, Lin P, Koditschek DE, Full RJ (2007) Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain. Bioinspir Biomim 2:9–18

    Article  PubMed  CAS  Google Scholar 

  • Stork NE (1980) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Biol 88:91–107

    Google Scholar 

  • Varenberg M, Gorb S (2007) Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J R Soc Interface 4:721–726

    Article  PubMed  CAS  Google Scholar 

  • Varenberg M, Gorb SN (2009) Hexagonal surface micropattern for dry and wet friction. Adv Mater 21:483–486

    Article  CAS  Google Scholar 

  • Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the help of Andreas Eckart, Patrick Drechsler, Saul Dominguez and Filip Szufnarowski for their help in the development of the LabVIEW motor control programmes. This study was funded by research grants of the UK Biotechnology and Biological Sciences Research Council, the Cambridge Isaac Newton Trust (to W.F.), the EU RTN-6 network “Patterns” (to U.S.), the European Union (Marie-Curie) funding (to D.R.B.), and the German National Academic Foundation (to J.H.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christofer J. Clemente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemente, C.J., Dirks, JH., Barbero, D.R. et al. Friction ridges in cockroach climbing pads: anisotropy of shear stress measured on transparent, microstructured substrates. J Comp Physiol A 195, 805–814 (2009). https://doi.org/10.1007/s00359-009-0457-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-009-0457-0

Keywords

Navigation