Skip to main content
Log in

Coping with physiological oxidative stress: a review of antioxidant strategies in seals

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

While diving, seals are exposed to apnea-induced hypoxemia and repetitive cycles of ischemia/reperfusion. While on land, seals experience sleep apnea, as well as prolonged periods of food and water deprivation. Prolonged fasting, sleep apnea, hypoxemia and ischemia/reperfusion increase oxidant production and oxidative stress in terrestrial mammals. In seals, however, neither prolonged fasting nor apnea-induced hypoxemia or ischemia/reperfusion increase systemic or local oxidative damage. The strategies seals evolved to cope with increased oxidant production are reviewed in the present manuscript. Among these strategies, high antioxidant capacity and the oxidant-mediated activation of hormetic responses against hypoxia and oxidative stress are discussed. In addition to expanding our knowledge of the evolution of antioxidant defenses and adaptive responses to oxidative stress, understanding the mechanisms that naturally allow mammals to avoid oxidative damage has the potential to advance our knowledge of oxidative stress-induced pathologies and to enhance the translative value of biomedical therapies in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antao ST, Duong TTH, Aran R, Witting PK (2010) Neuroglobin overexpression in cultured human neuronal cells protects against hydrogen peroxide insult via activating phosphoinositide-3 kinase and opening the mitochondrial katp channel. Antioxid Redox Signal 13(6):769–781. doi:10.1089/ars.2009.2977

    PubMed  CAS  Google Scholar 

  • Baines CP, Goto M, Downey JM (1997) Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29(1):207–216. doi:10.1006/jmcc.1996.0265

    PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547

    PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87(4):1620

    PubMed  CAS  Google Scholar 

  • Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR (2000) Role of hypoxia inducible factor 1 in hypoxia induced ischemic tolerance in neonatal rat brain. Ann Neurol 48(3):285–296. doi:10.1002/1531-8249(200009)48:3<285::AID-ANA2>3.0.CO;2-8

    PubMed  CAS  Google Scholar 

  • Blough NV, Zafiriou OC (1985) Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorg Chem 24(22):3502–3504. doi:10.1021/ic00216a003

    CAS  Google Scholar 

  • Boaz SM, Champagne CD, Fowler MA, Houser DH, Crocker DE (2012) Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods. Comp Biochem Physiol A Mol Integr Physiol 161(2):114–121. doi:10.1016/j.cbpa.2011.09.009

    PubMed  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3):707–716

    PubMed  CAS  Google Scholar 

  • Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76(3):839–885

    PubMed  CAS  Google Scholar 

  • Cantú-Medellín N, Byrd B, Hohn A, Vázquez-Medina JP, Zenteno-Savín T (2011) Differential antioxidant protection in tissues from marine mammals with distinct diving capacities. Shallow/short vs. deep/long divers. Comp Biochem Physiol A Mol Integr Physiol 158(4):438–443. doi:10.1016/j.cbpa.2010.11.029

    PubMed  Google Scholar 

  • Castellini M, Rea L (1992) The biochemistry of natural fasting at its limits. Experientia 48(6):575–582. doi:10.1007/BF01920242

    PubMed  CAS  Google Scholar 

  • Castellini MA, Milsom WK, Berger RJ, Costa DP, Jones DR, Castellini JM, Rea LD, Bharma S, Harris M (1994) Patterns of respiration and heart rate during wakefulness and sleep in elephant seal pups. Am J Physiol Regul Integr Comp Physiol 266(3):R863–R869

    CAS  Google Scholar 

  • Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24(5):816–823. doi:10.1161/01.ATV.0000122852.22604.78

    PubMed  CAS  Google Scholar 

  • Corral-Debrinski M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DC (1991) Hypoxemia is associated with mitochondrial DNA damage and gene induction. JAMA 266(13):1812–1816. doi:10.1001/jama.1991.03470130092035

    PubMed  CAS  Google Scholar 

  • Corsolini SC, Nigro MN, Olmastroni SO, Focardi SF, Regoli FR (2001) Susceptibility to oxidative stress in adélie and emperor penguin. Polar Biol 24(5):365–368. doi:10.1007/s003000000220

    Google Scholar 

  • Costantini D, Marasco V, Møller AP (2011) A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B 181(4):447–456. doi:10.1007/s00360-011-0566-2

    Google Scholar 

  • Elsner R (1999) Living in water: solutions to physiological problems. In: Reynolds JEI, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, Washington, pp 73–116

    Google Scholar 

  • Elsner R, Gooden B (1983) Diving and asphyxia: a comparative study of animals and man. Monogr Physiol Soc, vol 40. Cambridge University press, London

    Google Scholar 

  • Elsner R, Øyaster S, Saugstad OD, Blix AS (1995) Seal adaptations for long dives: recent studies of ischemia and oxygen radicals. In: Arnoldus Schytte Blix LW, Øyvind U (eds) Developments in marine biology, vol 4. Elsevier Science, Amsterdam, pp 371–376

    Google Scholar 

  • Elsner R, Øyasæter S, Almaas R, Saugstad OD (1998) Diving seals, ischemia–reperfusion and oxygen radicals. Comp Biochem Physiol A Mol Integr Physiol 119(4):975–980. doi:10.1016/S1095-6433(98)00012-9

    PubMed  CAS  Google Scholar 

  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 52(1):1–8. doi:10.2337/diabetes.52.1.1

    PubMed  CAS  Google Scholar 

  • Falke KJ, Busch T, Hoffmann O, Liggins GC, Liggins J, Mohnhaupt R, Roberts JD Jr, Stanek K, Zapol WM (2008) Breathing pattern, CO2 elimination and the absence of exhaled NO in freely diving weddell seals. Respir Physiol Neurobiol 162(1):85–92. doi:10.1016/j.resp.2008.04.007

    PubMed  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247. doi:10.1038/35041687

    Google Scholar 

  • Folkow LP, Ramirez J-M, Ludvigsen S, Ramirez N, Blix AS (2008) Remarkable neuronal hypoxia tolerance in the deep-diving adult hooded seal (Cystophora cristata). Neurosci Lett 446(2–3):147–150. doi:10.1016/j.neulet.2008.09.040

    PubMed  CAS  Google Scholar 

  • Forman HJ, Kennedy JA (1974) Role of superoxide radical in mitochondrial dehydrogenase reactions. Biochem Biophys Res Commun 60(3):1044–1050. doi:10.1016/0006-291x(74)90418-5

    PubMed  CAS  Google Scholar 

  • Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 30(1–2):1–12. doi:10.1016/j.mam.2008.08.006

    PubMed  CAS  Google Scholar 

  • Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49(5):835–842. doi:10.1021/bi9020378

    PubMed  CAS  Google Scholar 

  • Fowler MA, Champagne CD, Houser DS, Crocker DE (2008) Hormonal regulation of glucose clearance in lactating northern elephant seals (Mirounga angustirostris). J Exp Biol 211(18):2943–2949. doi:10.1242/jeb.018176

    PubMed  Google Scholar 

  • Fridovich I (2004) Mitochondria: are they the seat of senescence? Aging Cell 3(1):13–16. doi:10.1046/j.1474-9728.2003.00075.x

    PubMed  CAS  Google Scholar 

  • Furuichi T, Liu W, Shi H, Miyake M, Liu KJ (2005) Generation of hydrogen peroxide during brief oxygen glucose deprivation induces preconditioning neuronal protection in primary cultured neurons. J Neurosci Res 79(6):816–824. doi:10.1002/jnr.20402

    PubMed  CAS  Google Scholar 

  • Granger DN (1988) Role of xanthine oxidase and granulocytes in ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol 255(6):H1269–H1275

    CAS  Google Scholar 

  • Grimm C, Hermann D, Bogdanova A, Hotop S, Kilic U, Wenzel A, Kilic E, Gassmann M (2005) Neuroprotection by hypoxic preconditioning: HIF-1 and erythropoietin protect from retinal degeneration. Semin Cell Dev Biol 16(4–5):531–538. doi:10.1016/j.semcdb.2005.03.004

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. Biosciences Oxford, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255. doi:10.1038/sj.bjp.0705776

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300. doi:10.1093/geronj/11.3.298

    PubMed  CAS  Google Scholar 

  • Hermes-Lima M, Zenteno-Savín T (2002) Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 133(4):537–556. doi:10.1016/S1532-0456(02)00080-7

    PubMed  Google Scholar 

  • Hindle AG, Horning M (2010) Energetics of breath-hold hunting: modeling the effects of aging on foraging success in the weddell seal. J Theor Biol 264(3):673–682. doi:10.1016/j.jtbi.2010.03.045

    PubMed  Google Scholar 

  • Hindle AG, Horning M, Mellish JAE, Lawler JM (2009) Diving into old age: muscular senescence in a large-bodied, long-lived mammal, the weddell seal (Leptonychotes weddellii). J Exp Biol 212(6):790. doi:10.1242/jeb.025387

    PubMed  Google Scholar 

  • Hindle AG, Lawler JM, Campbell KL, Horning M (2010) Muscle aging and oxidative stress in wild-caught shrews. Comp Biochem Physiol B Biochem Mol Biol 155(4):427–434. doi:10.1016/j.cbpb.2010.01.007

    PubMed  Google Scholar 

  • Hindle AG, Mellish JAE, Horning M (2011) Aerobic dive limit does not decline in an aging pinniped. J Exp Zool A Ecol Genet Physiol 315A(9):544–552. doi:10.1002/jez.703

    Google Scholar 

  • Hoffman DL, Salter JD, Brookes PS (2007) Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol 292(1):H101–H108. doi:10.1152/ajpheart.00699.2006

    PubMed  CAS  Google Scholar 

  • Houser DS, Champagne CD, Crocker DE (2007) Lipolysis and glycerol gluconeogenesis in simultaneously fasting and lactating northern elephant seals. Am J Physiol Regul Integr Comp Physiol 293(6):R2376–R2381. doi:10.1152/ajpregu.00403.2007

    PubMed  CAS  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIF targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468. doi:10.1126/science.1059817

    PubMed  CAS  Google Scholar 

  • Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36(10):1199–1207. doi:10.1016/j.freeradbiomed.2004.02.074

    PubMed  CAS  Google Scholar 

  • Johnson P, Elsner R, Zenteno-Savín T (2004) Hypoxia-inducible factor in ringed seal (Phoca hispida) tissues. Free Radic Res 38(8):847–854. doi:10.1080/10715760410001725526

    PubMed  CAS  Google Scholar 

  • Johnson P, Elsner R, Zenteno-Savín T (2005) Hypoxia-inducible factor 1 proteomics and diving adaptations in ringed seal. Free Radic Biol Med 39(2):205–212. doi:10.1016/j.freeradbiomed.2005.03.008

    PubMed  CAS  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8(9–10):1865–1879. doi:10.1089/ars.2006.8.1865

    Google Scholar 

  • Kanatous SB, Mammen PPA (2010) Regulation of myoglobin expression. J Exp Biol 213(16):2741–2747. doi:10.1242/jeb.041442

    PubMed  CAS  Google Scholar 

  • Kasamatsu M, Kawauchi R, Tsunokawa M, Ueda K, Uchida E, Oikawa S, Higuchi H, Kawajiri T, Uchida S, Nagahata H (2009) Comparison of serum lipid compositions, lipid peroxide, alpha-tocopherol and lipoproteins in captive marine mammals (bottlenose dolphins, spotted seals and West Indian manatees) and terrestrial mammals. Res Vet Sci 86(2):216–222. doi:10.1016/j.rvsc.2008.07.006

    PubMed  CAS  Google Scholar 

  • Kelley EE, Khoo NKH, Hundley NJ, Malik UZ, Freeman BA, Tarpey MM (2010) Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med 48(4):493–498. doi:10.1016/j.freeradbiomed.2009.11.012

    PubMed  CAS  Google Scholar 

  • Kim K, Kim I, Lee KY, Rhee S, Stadtman E (1988) The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 263(10):4704–4711

    PubMed  CAS  Google Scholar 

  • Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, Uchida K, Yamamoto M (2006) Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol 26(1):221–229. doi:10.1128/MCB.26.1.221-229.2006

    PubMed  CAS  Google Scholar 

  • Kooyman GL (1989) Diverse divers: physiology and behavior. Springer, Berlin

    Google Scholar 

  • Kooyman G, Ponganis P (1998) The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol 60(1):19–32. doi:full/10.1146/annurev.physiol.60.1.19

    PubMed  CAS  Google Scholar 

  • Lawler JM, Hindle A (2011) Living in a box or call of the wild? Revisiting lifetime inactivity and sarcopenia. Antioxid Redox Signal 15(9):2529–2541. doi:10.1089/ars.2011.3974

    PubMed  CAS  Google Scholar 

  • Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S, Porter AG, O’Farrelly C, Rabb H, Taylor CT (2006) Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia–reperfusion injury. FASEB J 20(14):2624–2626. doi:10.1096/fj.06-5097fje

    PubMed  CAS  Google Scholar 

  • Li RC, Morris MW, Lee SK, Pouranfar F, Wang Y, Gozal D (2008) Neuroglobin protects PC12 cells against oxidative stress. Brain Res 1190:159–166. doi:10.1016/j.brainres.2007.11.022

    PubMed  CAS  Google Scholar 

  • Loschen G, Azzi A, Richter C, Flohé L (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 42(1):68–72. doi:10.1016/0014-5793(74)80281-4

    PubMed  CAS  Google Scholar 

  • Loshchagin O, Kovalenko R, Nozdrachev A, Yanvareva I, Krivoruchko B (2002) Possible role of catalase in adaptation to diving of semi-aquatic rodents Ondatra zibethica. J Evol Biochem Physiol 38(1):90–95. doi:10.1023/A:1015577607316

    CAS  Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7(1):1–7. doi:10.1016/j.arr.2007.08.007

    PubMed  CAS  Google Scholar 

  • McCord J (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312(3):159–163. doi:10.1056/NEJM198501173120305

    PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. J Biol Chem 244(22):6049–6055

    PubMed  CAS  Google Scholar 

  • Meir JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ (2009) Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am J Physiol Regul Integr Comp Physiol 297(4):R927–R939. doi:10.1152/ajpregu.00247.2009

    PubMed  CAS  Google Scholar 

  • Mitz SA, Reuss S, Folkow LP, Blix AS, Ramirez JM, Hankeln T, Burmester T (2009) When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain. Neuroscience 163(2):552–560. doi:10.1016/j.neuroscience.2009.06.058

    PubMed  CAS  Google Scholar 

  • Munck A, Guyre PM, Holbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5(1):25–44. doi:10.1210/edrv-5-1-25

    PubMed  CAS  Google Scholar 

  • Murphy BJ, Hochachka PW (1981) Free amino acid profiles in blood during diving and recovery in the Antarctic Weddell seal. Can J Zool 59(3):455–459. doi:10.1139/z81-066

    CAS  Google Scholar 

  • Noren S, Iverson S, Boness D (2005) Development of the blood and muscle oxygen stores in gray seals (Halichoerus grypus): implications for juvenile diving capacity and the necessity of a terrestrial postweaning fast. Physiol Biochem Zool 78(4):482–490. doi:10.1086/430228

    PubMed  Google Scholar 

  • Ortiz RM, Wade CE, Ortiz CL (2000) Prolonged fasting increases the response of the renin–angiotensin-aldosterone system, but not vasopressin levels, in postweaned northern elephant seal pups. Gen Comp Endocrinol 119(2):217–223. doi:10.1006/gcen.2000.7514

    PubMed  CAS  Google Scholar 

  • Ortiz RM, Wade CE, Ortiz CL (2001) Effects of prolonged fasting on plasma cortisol and TH in postweaned northern elephant seal pups. Am J Physiol Regul Integr Comp Physiol 280(3):R790–R795

    PubMed  CAS  Google Scholar 

  • Ortiz RM, Wade CE, Costa DP, Ortiz CL (2002) Renal responses to plasma volume expansion and hyperosmolality in fasting seal pups. Am J Physiol Reg Integr Comp Physiol 282(3):R805–R817. doi:10.1152/ajpregu.00418.2001

    CAS  Google Scholar 

  • Ortiz RM, Houser DS, Wade CE, Leo Ortiz C (2003a) Hormonal changes associated with the transition between nursing and natural fasting in northern elephant seals (Mirounga angustirostris). Gen Comp Endocrinol 130(1):78–83. doi:10.1016/s0016-6480(02)00572-5

    PubMed  CAS  Google Scholar 

  • Ortiz RM, Noren DP, Ortiz CL, Talamantes F (2003b) GH and ghrelin increase with fasting in a naturally adapted species, the northern elephant seal (Mirounga angustirostris). J Endocrinol 178(3):533–539. doi:10.1677/joe.0.1780533

    PubMed  CAS  Google Scholar 

  • Ortiz RM, Crocker DE, Houser DS, Webb PM (2006) Angiotensin II and aldosterone increase with fasting in breeding adult male northern elephant seals (Mirounga angustirostris). Physiol Biochem Zool 79(6):1106–1112. doi:10.1086/505996

    PubMed  CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    PubMed  CAS  Google Scholar 

  • Parks D, Bulkley G, Granger D (1983) Role of oxygen-derived free radicals in digestive tract diseases. Surgery 94(3):415–422

    PubMed  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266(7):4244–4250

    PubMed  CAS  Google Scholar 

  • Ramirez JM, Folkow LP, Ludvigsen S, Ramirez PN, Blix AS (2011) Slow intrinsic oscillations in thick neocortical slices of hypoxia tolerant deep diving seals. Neuroscience 177:35–42. doi:10.1016/j.neuroscience.2010.12.032

    PubMed  CAS  Google Scholar 

  • Ridgway S, Harrison R, Joyce P (1975) Sleep and cardiac rhythm in the gray seal. Science 187(4176):553–555. doi:10.1126/science.163484

    PubMed  CAS  Google Scholar 

  • Romero JC, Reckelhoff JF (1999) Role of angiotensin and oxidative stress in essential hypertension. Hypertension 34(4):943–949. doi:10.1161/01.HYP.34.4.943

    PubMed  CAS  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21(1):55–89. doi:10.1210/er.21.1.55

    PubMed  CAS  Google Scholar 

  • Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15(1):551–578. doi:10.1146/annurev.cellbio.15.1.551

    PubMed  CAS  Google Scholar 

  • Semenza GL (2000a) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88(4):1474–1480

    PubMed  CAS  Google Scholar 

  • Semenza GL (2000b) Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Invest 106(7):809–812. doi:10.1172/JCI11223

    PubMed  CAS  Google Scholar 

  • Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 1–8

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63. doi:10.1126/science.273.5271.59

    PubMed  CAS  Google Scholar 

  • Soñanez-Organis JG, Vázquez-Medina JP, Zenteno-Savín T, Aguilar A, Crocker DE, Ortiz RM (2012) Prolonged fasting increases purine recycling in postweaned northern elephant seals. J Exp Biol (in press)

  • Sorensen M, Sanz A, Gomez J, Pamplona R, Portero-Otin M, Gredilla R, Barja G (2006) Effects of fasting on oxidative stress in rat liver mitochondria. Free Radic Res 40(4):339–347. doi:10.1080/10715760500250182

    PubMed  CAS  Google Scholar 

  • Souza Rocha G, Fonseca AS, Rodrigues MP, Dantas FJS, Caldeira-de-Araujo A, Santos R (2008) Comet assay to determine DNA damage induced by food deprivation in rats. Acta Biol Hung 59(3):315–325. doi:10.1556/ABiol.59.2008.3.5

    Google Scholar 

  • Sowers JR (2002) Hypertension, angiotensin II, and oxidative stress. N Engl J Med 346(25):1999–2001. doi:10.1056/NEJMe020054

    PubMed  Google Scholar 

  • Stockard T, Levenson D, Berg L, Fransioli J, Baranov E, Ponganis P (2007) Blood oxygen depletion during rest-associated apneas of northern elephant seals (Mirounga angustirostris). J Exp Biol 210(15):2607. doi:10.1242/jeb.008078

    PubMed  CAS  Google Scholar 

  • Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29(12):1715–1733

    PubMed  CAS  Google Scholar 

  • Stowe DF, Camara AKS (2009) Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 11(6):1373–1414. doi:10.1089/ars.2008.2331

    PubMed  CAS  Google Scholar 

  • Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA (2001) Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci USA 98(26):15306–15311. doi:10.1073/pnas.251466698

    PubMed  CAS  Google Scholar 

  • Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22(1–2):269–285. doi:10.1016/S0891-5849(96)00275-4

    PubMed  CAS  Google Scholar 

  • Szkudelski T, Okulicz M, Bialik I, Szkudelska K (2004) The influence of fasting on liver sulfhydryl groups, glutathione peroxidase and glutathione-S-transferase activities in the rat. J Physiol Biochem 60(1):1–6. doi:10.1007/BF03168215

    PubMed  CAS  Google Scholar 

  • Takac I, Schröder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286(15):13304–13313. doi:10.1074/jbc.M110.192138

    PubMed  CAS  Google Scholar 

  • Tift MS, Houser DS, Crocker DE (2011) High-density lipoprotein remains elevated despite reductions in total cholesterol in fasting adult male elephant seals (Mirounga angustirostris). Comp Biochem Physiol B Biochem Mol Biol 159(4):214–219. doi:10.1016/j.cbpb.2011.04.005

    PubMed  Google Scholar 

  • Umemura K, Itoh T, Hamada N, Fujita Y, Akao Y, Nozawa Y, Matsuura N, Iinuma M, Ito M (2008) Preconditioning by sesquiterpene lactone enhances H2O2-induced Nrf2/ARE activation. Biochem Biophys Res Commun 368(4):948–954. doi:10.1016/j.bbrc.2008.02.018

    PubMed  CAS  Google Scholar 

  • Vázquez-Medina JP, Zenteno-Savín T, Elsner R (2006) Antioxidant enzymes in ringed seal tissues: potential protection against dive-associated ischemia/reperfusion. Comp Biochem Physiol C Toxicol Pharmacol 142(3–4):198–204. doi:10.1016/j.cbpc.2005.09.004

    PubMed  Google Scholar 

  • Vázquez-Medina JP, Zenteno-Savín T, Elsner R (2007) Glutathione protection against dive-associated ischemia/reperfusion in ringed seal tissues. J Exp Mar Biol Ecol 345(2):110–118. doi:10.1016/j.jembe.2007.02.003

    Google Scholar 

  • Vázquez-Medina JP, Crocker DE, Forman HJ, Ortiz RM (2010) Prolonged fasting does not increase oxidative damage or inflammation in postweaned northern elephant seal pups. J Exp Biol 213(14):2524–2530. doi:10.1242/jeb.041335

    PubMed  Google Scholar 

  • Vázquez-Medina JP, Olguín-Monroy NO, Maldonado PD, Santamaría A, Königsberg M, Elsner R, Hammilll MO, Burns JM, Zenteno-Savín T (2011a) Maturarion increases superoxide radical production without increasing oxidative damage in the skeletal muscle of hooded seals (Cystophora cristata). Can J Zool 89:206–212. doi:10.1139/Z10-107

    Google Scholar 

  • Vázquez-Medina JP, Soñanez-Organis JG, Burns JM, Zenteno-Savín T, Ortiz RM (2011b) Antioxidant capacity develops with maturation in the deep diving hooded seal. J Exp Biol 214:2903–2910. doi:10.1242/jeb.057935

    PubMed  Google Scholar 

  • Vázquez-Medina JP, Zenteno-Savín T, Crocker DE, Forman HJ, Ortiz RM (2011c) Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals. J Exp Biol 214:1294–1299. doi:10.1242/jeb.054320

    PubMed  Google Scholar 

  • Vázquez-Medina JP, Zenteno-Savín T, Tift MS, Forman HJ, Crocker DE, Ortiz RM (2011d) Apnea stimulates the adaptive response to oxidative stress in elephant seal pups. J Exp Biol 214:4193–4200. doi:10.1242/jeb.063644

    PubMed  Google Scholar 

  • Viscarra JA, Champagne CD, Crocker DE, Ortiz RM (2011a) 5′AMP-activated protein kinase activity is increased in adipose tissue of northern elephant seal pups during prolonged fasting-induced insulin resistance. J Endocrinol 209(3):317–325. doi:10.1530/joe-11-0017

    PubMed  CAS  Google Scholar 

  • Viscarra JA, Vázquez-Medina JP, Crocker DE, Ortiz RM (2011b) Glut4 is upregulated despite decreased insulin signaling during prolonged fasting in northern elephant seal pups. Am J Physiol Reg Integr Comp Physiol 300(1):R150–R154. doi:10.1152/ajpregu.00478.2010

    CAS  Google Scholar 

  • Wilhelm Filho D, Sell F, Ribeiro L, Ghislandi M, Carrasquedo F, Fraga CG, Wallauer JP, Simões-Lopes PC, Uhart MM (2002) Comparison between the antioxidant status of terrestrial and diving mammals. Comp Biochem Physiol A Mol Integr Physiol 133(3):885–892. doi:10.1016/S1095-6433(02)00253-2

    PubMed  CAS  Google Scholar 

  • Williams TM, Zavanelli M, Miller MA, Goldbeck RA, Morledge M, Casper D, Pabst DA, McLellan W, Cantin LP, Kliger DS (2008) Running, swimming and diving modifies neuroprotecting globins in the mammalian brain. Proc Biol Sci 275(1636):751–758. doi:10.1098/rspb.2007.1484

    PubMed  CAS  Google Scholar 

  • Yuan HJ, Zhu XH, Luo Q, Wu YN, Kang Y, Jiao JJ, Gao WZ, Liu YX, Lou JS (2010) Noninvasive delayed limb ischemic preconditioning in rats increases antioxidant activities in cerebral tissue during severe ischemia–reperfusion injury. J Surg Res. doi:10.1016/j.jss.2010.11.001

  • Zenteno-Savín T, Clayton-Hernandez E, Elsner R (2002) Diving seals: are they a model for coping with oxidative stress? Comp Biochem Physiol C Toxicol Pharmacol 133(4):527–536. doi:10.1016/S1532-0456(02)00075-3

    PubMed  Google Scholar 

  • Zenteno-Savín T, St Leger J, Ponganis PJ (2010) Hypoxemic and ischemic tolerance in emperor penguins. Comp Biochem Physiol C Toxicol Pharmacol 152(1):18–23. doi:10.1016/j.cbpc.2010.02.007

    PubMed  Google Scholar 

  • Zhu XH, Yuan HJ, Wu YN, Kang Y, Jiao JJ, Gao WZ, Liu YX, Lou JS, Xia Z (2011) Non-invasive limb ischemic pre-conditioning reduces oxidative stress and attenuates myocardium ischemia–reperfusion injury in diabetic rats. Free Radic Res 45(2):201–210. doi:10.3109/10715762.2010.522576

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for their valuable comments that helped us to improve this manuscript. JPV-M is supported by fellowships form Mexico’s Consejo Nacional de Ciencia y Tecnología (CONACYT), The University of California Institute for Mexico and the United States (UC MEXUS) and The University of California Miguel Velez Scholarship Fund. RMO is supported by a NIH NHLBI Career Development Award (K02HL103787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Pablo Vázquez-Medina.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez-Medina, J.P., Zenteno-Savín, T., Elsner, R. et al. Coping with physiological oxidative stress: a review of antioxidant strategies in seals. J Comp Physiol B 182, 741–750 (2012). https://doi.org/10.1007/s00360-012-0652-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0652-0

Keywords

Navigation