Skip to main content
Log in

A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Although transplantation of c-kit+ cardiac stem cells (CSCs) alleviates post-myocardial infarction left ventricular dysfunction, there are no reliable methods that enable measurement of the absolute number of CSCs that persist in the recipient heart. To overcome this limitation, we developed a highly sensitive and accurate method to quantify the absolute number of murine CSCs after transplantation. This method has two unique features: (1) real-time PCR-based detection of a novel male-specific, multiple-copy gene, Rbmy, which significantly increases the sensitivity of detection of male donor cells in a female recipient, and (2) an internal standard, which permits quantification of the absolute number of CSCs as well as the total number of cells in the recipient organ. Female C57BL/6 mice underwent coronary occlusion and reperfusion; 2 days later, 105 male mouse CSCs were injected intramyocardially. Tissues were analyzed by real-time PCR at serial time points. In the risk region, >75 % of CSCs present at 5 min were lost in the ensuing 24 h; only 7.6 ± 2.1 % of the CSCs present at 5 min could still be found at 7 days after transplantation and only 2.8 ± 0.5 % (i.e., 1,224 ± 230 cells/heart) at 35 days. Thus, even after direct intramyocardial injection, the total number of CSCs that remain in the murine heart is minimal (at 24 h, ~10 % of the cells injected; at 35 days, ~1 %). This new quantitative method of stem cell detection, which enables measurement of absolute cell number, should be useful to optimize cell-based therapies, not only for CSCs but also for other stem cells and other organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104:14068–14073. doi:10.1073/pnas.0706760104

    Article  PubMed  CAS  Google Scholar 

  2. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776 (pii: S0092867403006871)

    Article  PubMed  CAS  Google Scholar 

  3. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, Fellous M (1990) Genetic evidence equating SRY and the testis-determining factor. Nature 348:448–450. doi:10.1038/348448A0

    Article  PubMed  CAS  Google Scholar 

  4. Bick SL, Bick DP, Wells BE, Roesler MR, Strawn EY, Lau EC (2008) Preimplantation HLA haplotyping using tri-, tetra-, and pentanucleotide short tandem repeats for HLA matching. J Assist Reprod Genet 25:323–331. doi:10.1007/s10815-008-9233-2

    Article  PubMed  Google Scholar 

  5. Chai NN, Zhou H, Hernandez J, Najmabadi H, Bhasin S, Yen PH (1998) Structure and organization of the RBMY genes on the human Y chromosome: transposition and amplification of an ancestral autosomal hnRNPG gene. Genomics 49:283–289. doi:10.1006/geno.1998.5255

    Article  PubMed  CAS  Google Scholar 

  6. Cheng K, Gupta S (2009) Quantitative tools for assessing the fate of xenotransplanted human stem/progenitor cells in chimeric mice. Xenotransplantation 16:145–151. doi:10.1111/j.1399-3089.2009.00526.x

    Article  PubMed  Google Scholar 

  7. Dawn B, Tiwari S, Kucia MJ, Zuba-Surma EK, Guo Y, Sanganalmath SK, Abdel-Latif A, Hunt G, Vincent RJ, Taher H, Reed NJ, Ratajczak MZ, Bolli R (2008) Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells 26:1646–1655. doi:10.1634/stemcells.2007-0715

    Article  PubMed  Google Scholar 

  8. Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM (2003) Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107:1247–1249

    Article  PubMed  Google Scholar 

  9. Delbridge ML, Lingenfelter PA, Disteche CM, Graves JA (1999) The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome. Nat Genet 22:223–224. doi:10.1038/10279

    Article  PubMed  CAS  Google Scholar 

  10. Dow J, Simkhovich BZ, Kedes L, Kloner RA (2005) Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc Res 67:301–307. doi:10.1016/j.cardiores.2005.04.011

    Article  PubMed  CAS  Google Scholar 

  11. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GR, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJ, Parker A, Proctor G, Vogel J, Searle SM (2011) Ensembl 2011. Nucleic Acids Res 39:D800–D806. doi:10.1093/nar/gkq1064

    Article  PubMed  CAS  Google Scholar 

  12. Forrester JS, Libby P (2007) The inflammation hypothesis and its potential relevance to statin therapy. Am J Cardiol 99:732–738. doi:10.1016/j.amjcard.2006.09.125

    Article  PubMed  CAS  Google Scholar 

  13. Funkhouser AW, Vahed S, Soriano HE (2001) A “real time” PCR assay to detect transplanted human liver cells in RAG-1−/− mice. Cell Transpl 10:91–99

    CAS  Google Scholar 

  14. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346:245–250. doi:10.1038/346245a0

    Article  PubMed  CAS  Google Scholar 

  15. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R (1999) The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA 96:11507–11512

    Article  PubMed  CAS  Google Scholar 

  16. Haider H, Ashraf M (2008) Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 45:554–566. doi:10.1016/j.yjmcc.2008.05.004

    Article  PubMed  CAS  Google Scholar 

  17. Jiang S, Walker L, Afentoulis M, Anderson DA, Jauron-Mills L, Corless CL, Fleming WH (2004) Transplanted human bone marrow contributes to vascular endothelium. Proc Natl Acad Sci USA 101:16891–16896. doi:10.1073/pnas.0404398101

    Article  PubMed  CAS  Google Scholar 

  18. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024. doi:10.1038/nbt1327

    Article  PubMed  CAS  Google Scholar 

  19. Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E, Police S, Muskheli V, Murry CE (2005) Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 167:663–671. doi:10.1016/S0002-9440(10)62041-X

    Article  PubMed  CAS  Google Scholar 

  20. Lee ST, Chu K, Kim EH, Jung KH, Lee KB, Sinn DI, Kim SU, Kim M, Roh JK (2006) Quantification of human neural stem cell engraftments in rat brains using ERV-3 real-time PCR. J Neurosci Methods 157:225–229. doi:10.1016/j.jneumeth.2006.04.019

    Article  PubMed  CAS  Google Scholar 

  21. Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746. doi:10.1006/jmcc.1996.0163

    Article  PubMed  CAS  Google Scholar 

  22. Li Q, Guo Y, Ou Q, Chen N, Wu WJ, Yuan F, O’Brien E, Wang T, Luo L, Hunt GN, Zhu X, Bolli R (2011) Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Res Cardiol 106:849–864. doi:10.1007/s00395-011-0180-1

    Article  PubMed  Google Scholar 

  23. Li Q, Guo Y, Ou Q, Cui C, Wu WJ, Tan W, Zhu X, Lanceta LB, Sanganalmath SK, Dawn B, Shinmura K, Rokosh GD, Wang S, Bolli R (2009) Gene transfer of inducible nitric oxide synthase affords cardioprotection by upregulating heme oxygenase-1 via a nuclear factor-{kappa}B-dependent pathway. Circulation 120:1222–1230. doi:10.1161/CIRCULATIONAHA.108.778688

    Article  PubMed  CAS  Google Scholar 

  24. Ma K, Inglis JD, Sharkey A, Bickmore WA, Hill RE, Prosser EJ, Speed RM, Thomson EJ, Jobling M, Taylor K et al (1993) A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell 75:1287–1295. doi:10.1016/0092-8674(93)90616-X

    Article  PubMed  CAS  Google Scholar 

  25. Muller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, Laird PW, Kedes L (2002) Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 34:107–116. doi:10.1006/jmcc.2001.1491

    Article  PubMed  Google Scholar 

  26. Penn MS, Mangi AA (2008) Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ Res 102:1471–1482. doi:10.1161/CIRCRESAHA.108.175174

    Article  PubMed  CAS  Google Scholar 

  27. Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100:193–202

    Article  PubMed  CAS  Google Scholar 

  28. Robey TE, Saiget MK, Reinecke H, Murry CE (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45:567–581. doi:10.1016/j.yjmcc.2008.03.009

    Article  PubMed  CAS  Google Scholar 

  29. Schachinger V, Aicher A, Dobert N, Rover R, Diener J, Fichtlscherer S, Assmus B, Seeger FH, Menzel C, Brenner W, Dimmeler S, Zeiher AM (2008) Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation 118:1425–1432. doi:10.1161/CIRCULATIONAHA.108.777102

    Article  PubMed  Google Scholar 

  30. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244. doi:10.1038/346240a0

    Article  PubMed  CAS  Google Scholar 

  31. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou SF, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang SP, Waterston RH, Wilson RK, Rozen S, Page DC (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837. doi:10.1038/nature01722

    Article  PubMed  CAS  Google Scholar 

  32. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, Bolli R (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121:293–305. doi:10.1161/CIRCULATIONAHA.109.871905

    Article  PubMed  Google Scholar 

  33. Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46:1339–1350. doi:10.1016/j.jacc.2005.05.079

    Article  PubMed  CAS  Google Scholar 

  34. Tashiro H, Fukuda Y, Kimura A, Hoshino S, Ito H, Dohi K (1996) Assessment of microchimerism in rat liver transplantation by polymerase chain reaction. Hepatology 23:828–834. doi:10.1053/jhep.1996.v23.pm0008666338

    Article  PubMed  CAS  Google Scholar 

  35. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  36. Walsh S, Ponten A, Fleischmann BK, Jovinge S (2010) Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86:365–373. doi:10.1093/cvr/cvq005

    Article  PubMed  CAS  Google Scholar 

  37. Wang LJ, Chen YM, George D, Smets F, Sokal EM, Bremer EG, Soriano HE (2002) Engraftment assessment in human and mouse liver tissue after sex-mismatched liver cell transplantation by real-time quantitative PCR for Y chromosome sequences. Liver Transpl 8:822–828. doi:10.1053/jlts.2002.34891

    Article  PubMed  Google Scholar 

  38. Wu JC, Abraham MR, Kraitchman DL (2010) Current perspectives on imaging cardiac stem cell therapy. J Nucl Med 51(Suppl 1):128S–136S. doi:10.2967/jnumed.109.068239

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by NIH grants R01 HL55757, HL-70897, HL-76794, and P01HL78825.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bolli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, K.U., Li, QH., Guo, Y. et al. A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res Cardiol 108, 346 (2013). https://doi.org/10.1007/s00395-013-0346-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0346-0

Keywords

Navigation