Skip to main content

Advertisement

Log in

Entorhinal verrucae geometry is coincident and correlates with Alzheimer’s lesions: a combined neuropathology and high-resolution ex vivo MRI analysis

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Entorhinal cortex displays a distinctive organization in layer II and forms small elevations on its surface called entorhinal verrucae. In Alzheimer’s disease, the verrucae disappear due to neurofibrillary tangle formation and neuronal death. Isosurface models were reconstructed from high-resolution ex vivo MRI volumes scanned at 7.0 T and individual verruca were measured quantitatively for height, width, volume, and surface area on control and mild Alzheimer’s cases. Mean verruca height was 0.13 ± 0.04 mm for our cognitively normal (controls) sample set whereas for mild AD samples mean height was 0.11 mm ± 0.05 mm (p < 0.001) in entorhinal cortex (n = 10 cases). These quantitative methods were validated by a significant correlation of verrucae height and volume with qualitative verrucae ratings (n = 36 cases). Entorhinal surfaces were significantly different from other cortical heights such as, cingulate, frontal, occipital, parietal and temporal cortices. Colocalization of verrucae with entorhinal islands was confirmed in ex vivo MRI and, moreover, verrucae ratings were negatively correlated to Braak and Braak pathological stage. This study characterizes novel methods to measure individual entorhinal verruca size, and shows that verrucae size correlates to Alzheimer’s pathology. Taken together, these results suggest that verrucae may have the potential to serve as an early and specific morphological marker for mild cognitive impairment and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arendt T (2009) Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118:167–179

    Article  PubMed  Google Scholar 

  2. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639

    PubMed  CAS  Google Scholar 

  3. Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–1688

    PubMed  CAS  Google Scholar 

  4. Augustinack JC, van der Kouwe AJ, Blackwell ML, Salat DH, Wiggins CJ, Frosch MP, Wiggins GC, Potthast A, Wald LL, Fischl BR (2005) Detection of entorhinal layer II using 7 Tesla magnetic resonance imaging. Ann Neurol 57:489–494

    Article  PubMed  Google Scholar 

  5. Ball MJ (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol 37:111–118

    Article  PubMed  CAS  Google Scholar 

  6. Bancher C, Jellinger K, Lassmann H, Fischer P, Leblhuber F (1996) Correlations between mental state and quantitative neuropathology in the Vienna Longitudinal Study on Dementia. Eur Arch Psychiatry Clin Neurosci 246:137–146

    Article  PubMed  CAS  Google Scholar 

  7. Barbier EL, Marrett S, Danek A, Vortmeyer A, van Gelderen P, Duyn J, Bandettini P, Grafman J, Koretsky AP (2002) Imaging cortical anatomy by high-resolution MR at 3.0 T: detection of the stripe of Gennari in visual area 17. Magn Reson Med 48:735–738

    Article  PubMed  Google Scholar 

  8. Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, Wilson RS (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66:1837–1844

    Article  PubMed  CAS  Google Scholar 

  9. Bennett DA, Schneider JA, Bienias JL, Evans DA, Wilson RS (2005) Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology 64:834–841

    Article  PubMed  CAS  Google Scholar 

  10. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  11. Cabalka LM, Hyman BT, Goodlett CR, Ritchie TC, Van Hoesen GW (1992) Alteration in the pattern of nerve terminal protein immunoreactivity in the perforant pathway in Alzheimer’s disease and in rats after entorhinal lesions. Neurobiol Aging 13:283–291

    Article  PubMed  CAS  Google Scholar 

  12. Cajal SR (1955) Studies on the cerebral cortex (translated from Spanish by Kraft LM). Yearbook Publishers, Chicago

  13. Clark VP, Courchesne E, Grafe M (1992) In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. Cereb Cortex 2:417–424

    Article  PubMed  CAS  Google Scholar 

  14. Cline HE, Dumoulin CL, Hart HR Jr, Lorensen WE, Ludke S (1987) 3D reconstruction of the brain from magnetic resonance images using a connectivity algorithm. Magn Reson Imaging 5:345–352

    Article  PubMed  CAS  Google Scholar 

  15. Davis DG, Schmitt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58:376–388

    Article  PubMed  CAS  Google Scholar 

  16. Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci USA 104:11796–11801

    Article  PubMed  CAS  Google Scholar 

  17. Ewbank DC, Arnold SE (2009) Cool with plaques and tangles. N Engl J Med 360:2357–2359

    Article  PubMed  CAS  Google Scholar 

  18. Fischl B, Stevens AA, Rajendran N, Yeo BT, Greve DN, Van Leemput K, Polimeni JR, Kakunoori S, Buckner RL, Pacheco J, Salat DH, Melcher J, Frosch MP, Hyman BT, Grant PE, Rosen BR, van der Kouwe AJ, Wiggins GC, Wald LL, Augustinack JC (2009) Predicting the location of entorhinal cortex from MRI. Neuroimage 47:8–17

    Article  PubMed  Google Scholar 

  19. Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60:1495–1500

    PubMed  CAS  Google Scholar 

  20. Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24

    Article  PubMed  CAS  Google Scholar 

  21. Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500

    PubMed  CAS  Google Scholar 

  22. Hanke J, Yilmazer-Hanke DM (1997) Variabilities in the distribution of neurofibrillary tangles in the anterior parahippocampal gyrus at initial stages of Alzheimer’s disease. Clin Neuropathol 16:299–302

    PubMed  CAS  Google Scholar 

  23. Haroutunian V, Purohit DP, Perl DP, Marin D, Khan K, Lantz M, Davis KL, Mohs RC (1999) Neurofibrillary tangles in nondemented elderly subjects and mild Alzheimer disease. Arch Neurol 56:713–718

    Article  PubMed  CAS  Google Scholar 

  24. Heinonen O, Soininen H, Sorvari H, Kosunen O, Paljarvi L, Koivisto E, Riekkinen PJ Sr (1995) Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer’s disease. Neuroscience 64:375–384

    Article  PubMed  CAS  Google Scholar 

  25. Heinsen H, Henn R, Eisenmenger W, Gotz M, Bohl J, Bethke B, Lockemann U, Puschel K (1994) Quantitative investigations on the human entorhinal area: left–right asymmetry and age-related changes. Anat Embryol 190:181–194

    Article  PubMed  CAS  Google Scholar 

  26. Hof PR, Bussiere T, Gold G, Kovari E, Giannakopoulos P, Bouras C, Perl DP, Morrison JH (2003) Stereologic evidence for persistence of viable neurons in layer II of the entorhinal cortex and the CA1 field in Alzheimer disease. J Neuropathol Exp Neurol 62:55–67

    PubMed  Google Scholar 

  27. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Article  PubMed  CAS  Google Scholar 

  28. Iqbal K, Wisniewski HM, Grundke-Iqbal I, Terry RD (1977) Neurofibrillary pathology: an update. In: Nandy K, Sherwin I (eds) The aging brain and senile dementia. Plenum, New York, pp 209–227

    Google Scholar 

  29. Kemper T (1984) Neuroanatomical and Neuropathological changes in normal aging and in dementia kemper. In: Albert ML, Knopefel JE (eds) Clinical neurology of aging. Oxford University Press, New York, pp 9–52

    Google Scholar 

  30. Klinger J. (1948) Die makroskopische Anatomie der Ammonsformation. Denkschr. Schweiz. Naturforsch 78

  31. Knopman DS, Parisi JE, Salviati A, Floriach-Robert M, Boeve BF, Ivnik RJ, Smith GE, Dickson DW, Johnson KA, Petersen LE, McDonald WC, Braak H, Petersen RC (2003) Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 62:1087–1095

    PubMed  CAS  Google Scholar 

  32. Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D, Mufson EJ (2001) Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49:202–213

    Article  PubMed  CAS  Google Scholar 

  33. Mann DM, Neary D, Yates PO, Lincoln J, Snowden JS, Stanworth P (1981) Alterations in protein synthetic capability of nerve cells in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 44:97–102

    Article  PubMed  CAS  Google Scholar 

  34. Mann DM, Neary D, Yates PO, Lincoln J, Snowden JS, Stanworth P (1981) Neurofibrillary pathology and protein synthetic capability in nerve cells in Alzheimer’s disease. Neuropathol Appl Neurobiol 7:37–47

    Article  PubMed  CAS  Google Scholar 

  35. Mann DM, Yates PO (1981) The relationship between formation of senile plaques and neurofibrillary tangles and changes in nerve cell metabolism in Alzheimer type dementia. Mech Ageing Dev 17:395–401

    Article  PubMed  CAS  Google Scholar 

  36. Markesbery WR (2010) Neuropathologic alterations in mild cognitive impairment: a review. J Alzheimers Dis 19:221–228

    PubMed  Google Scholar 

  37. Marksteiner J, Kaufmann WA, Gurka P, Humpel C (2002) Synaptic proteins in Alzheimer’s disease. J Mol Neurosci 18:53–63

    Article  PubMed  CAS  Google Scholar 

  38. Masliah E, Crews L, Hansen L (2006) Synaptic remodeling during aging and in Alzheimer’s disease. J Alzheimers Dis 9:91–99

    PubMed  CAS  Google Scholar 

  39. Nelson PT, Kukull WA, Frosch MP (2010) Thinking outside the box: Alzheimer-type neuropathology that does not map directly onto current consensus recommendations. J Neuropathol Exp Neurol 69:449–454

    Article  PubMed  Google Scholar 

  40. Retzius G (1896) Das Menschenhirn. Norstedt and Sonhe, Stockholm

    Google Scholar 

  41. Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C (2009) Age, neuropathology, and dementia. N Engl J Med 360:2302–2309

    Article  PubMed  CAS  Google Scholar 

  42. Silver MH, Newell K, Brady C, Hedley-White ET, Perls TT (2002) Distinguishing between neurodegenerative disease and disease-free aging: correlating neuropsychological evaluations and neuropathological studies in centenarians. Psychosom Med 64:493–501

    PubMed  Google Scholar 

  43. Simic G, Bexheti S, Kelovic Z, Kos M, Grbic K, Hof PR, Kostovic I (2005) Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex. Neuroscience 130:911–925

    Article  PubMed  CAS  Google Scholar 

  44. Solodkin A, Van Hoesen GW (1996) Entorhinal cortex modules of the human brain. J Comp Neurol 365:610–617

    Article  PubMed  CAS  Google Scholar 

  45. Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56:933–944

    Article  PubMed  CAS  Google Scholar 

  46. Terry RD. (1995) Biologic differences between early- and late-onset Alzheimer disease. Alzheimer Dis Assoc Dis 9(Suppl 1): S26–S27

    Google Scholar 

  47. Terry RD (2000) Cell death or synaptic loss in Alzheimer disease. J Neuropathol Exp Neurol 59:1118–1119

    PubMed  CAS  Google Scholar 

  48. Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539

    Article  PubMed  CAS  Google Scholar 

  49. van de Nes JA, Nafe R, Schlote W (2008) Non-tau based neuronal degeneration in Alzheimer’s disease–an immunocytochemical and quantitative study in the supragranular layers of the middle temporal neocortex. Brain Res 1213:152–165

    Article  PubMed  Google Scholar 

  50. van der Kouwe AJ, Benner T, Dale AM (2006) Real-time rigid body motion correction and shimming using cloverleaf navigators. Magn Reson Med 56:1019–1032

    Article  PubMed  Google Scholar 

  51. Van Hoesen G, Pandya DN (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1–24

    Article  PubMed  Google Scholar 

  52. Van Hoesen GW (1995) Anatomy of the medial temporal lobe. Magn Reson Imaging 13:1047–1055

    Article  PubMed  Google Scholar 

  53. Van Hoesen GW, Augustinack JC, Dierking J, Redman SJ, Thangavel R (2000) The parahippocampal gyrus in Alzheimer’s disease. Clinical and preclinical neuroanatomical correlates. Ann N Y Acad Sci 911:254–274

    Article  PubMed  Google Scholar 

  54. Van Hoesen GW, Hyman BT, Damasio AR (1991) Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1:1–8

    Article  PubMed  Google Scholar 

  55. Van Hoesen GW, Solodkin A (1993) Some modular features of temporal cortex in humans as revealed by pathological changes in Alzheimer’s disease. Cereb Cortex 3:465–475

    Article  PubMed  Google Scholar 

  56. Wisniewski HM, Soifer D (1979) Neurofibrillary pathology: current status and research perspectives. Mech Ageing Dev 9:119–142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank those who donated tissue; their generous donation made this work possible. We also thank David Salat for comments and discussion. Support for this research was provided in part by the National Center for Research Resources (P41-RR14075, and the NCRR BIRN Morphometric Project BIRN002, U24 RR021382), the National Institute for Biomedical Imaging and Bioengineering (R01EB006758), the National Institute on Aging (AG022381) and (AG028521), the National Center for Alternative Medicine (RC1AT005728-01), the National Institute for Neurological Disorders and Stroke (R01 NS052585-01, 1R21NS072652-01, 1R01NS070963), and was made possible by the resources provided by Shared Instrumentation Grants 1S10RR023401, 1S10RR019307, and 1S10RR023043. Additional support was provided by The Autism and Dyslexia Project funded by the Ellison Medical Foundation and by the NIH Blueprint for Neuro-science Research (U01-MH093765, part of the multi-institutional Human Connectome Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean C. Augustinack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustinack, J.C., Huber, K.E., Postelnicu, G.M. et al. Entorhinal verrucae geometry is coincident and correlates with Alzheimer’s lesions: a combined neuropathology and high-resolution ex vivo MRI analysis. Acta Neuropathol 123, 85–96 (2012). https://doi.org/10.1007/s00401-011-0929-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0929-5

Keywords

Navigation