Skip to main content

Advertisement

Log in

A prognostic gene expression signature in infratentorial ependymoma

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Patients with ependymoma exhibit a wide range of clinical outcomes that are currently unexplained by clinical or histological factors. Little is known regarding molecular biomarkers that could predict clinical behavior. Since recent data suggest that these tumors display biological characteristics according to their location (cerebral vs. infratentorial vs. spinal cord), rather than explore a broad spectrum of ependymoma, we focused on molecular alterations in ependymomas arising in the infratentorial compartment. Unsupervised clustering of available gene expression microarray data revealed two major subgroups of infratentorial ependymoma. Group 1 tumors over expressed genes that were associated with mesenchyme, Group 2 tumors showed no distinct gene ontologies. To assess the prognostic significance of these gene expression subgroups, real-time reverse transcriptase polymerase chain reaction assays were performed on genes defining the subgroups in a training set. This resulted in a 10-gene prognostic signature. Multivariate analysis showed that the 10-gene signature was an independent predictor of recurrence-free survival after adjusting for clinical factors. Evaluation of an external dataset describing subgroups of infratentorial ependymomas showed concordance of subgroup definition, including validation of the mesenchymal subclass. Importantly, the 10-gene signature was validated as a predictor of recurrence-free survival in this dataset. Taken together, the results indicate a link between clinical outcome and biologically identified subsets of infratentorial ependymoma and offer the potential for prognostic testing to estimate clinical aggressiveness in these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Altura RA, Olshefski RS, Jiang Y, Boue DR (2003) Nuclear expression of survivin in paediatric ependymomas and choroid plexus tumours correlates with morphologic tumour grade. Br J Cancer 89:1743–1749

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong TS, Vera-Bolanos E, Gilbert MR (2011) Clinical course of adult patients with ependymoma: results of the Adult Ependymoma Outcomes Project. Cancer 117:5133–5141

    Article  PubMed  Google Scholar 

  3. Bennetto L, Foreman N, Harding B, Hayward R, Ironside J, Love S, Ellison D (1998) Ki-67 immunolabelling index is a prognostic indicator in childhood posterior fossa ependymomas. Neuropathol Appl Neurobiol 24:434–440

    Article  PubMed  CAS  Google Scholar 

  4. Brannon AR, Reddy A, Seiler M et al (2010) Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer 1:152–163

    Article  PubMed  CAS  Google Scholar 

  5. Brase JC, Schmidt M, Fischbach T, Sultmann H, Bojar H, Koelbl H, Hellwig B, Rahnenfuhrer J, Hengstler JG, Gehrmann MC (2010) ERBB2 and TOP2A in breast cancer: a comprehensive analysis of gene amplification, RNA levels, and protein expression and their influence on prognosis and prediction. Clin Cancer Res 16:2391–2401

    Article  PubMed  CAS  Google Scholar 

  6. Colman H, Zhang L, Sulman EP et al (2010) A multigene predictor of outcome in glioblastoma. Neuro Oncol 12:49–57

    Article  PubMed  CAS  Google Scholar 

  7. Diaz-Moralli S, Tarrado-Castellarnau M, Alenda C, Castells A, Cascante M (2011) Transketolase-like 1 expression is modulated during colorectal cancer progression and metastasis formation. PLoS One 6:e25323

    Article  PubMed  CAS  Google Scholar 

  8. Donson AM, Birks DK, Barton VN, Wei Q, Kleinschmidt-Demasters BK, Handler MH, Waziri AE, Wang M, Foreman NK (2009) Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J Immunol 183:7428–7440

    Article  PubMed  CAS  Google Scholar 

  9. Ebert C, von Haken M, Meyer-Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T, von Deimling A (1999) Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155:627–632

    Article  PubMed  CAS  Google Scholar 

  10. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mischel PS, Nelson SF (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64:6503–6510

    Article  PubMed  CAS  Google Scholar 

  11. Gilbertson RJ, Bentley L, Hernan R, Junttila TT, Frank AJ, Haapasalo H, Connelly M, Wetmore C, Curran T, Elenius K, Ellison DW (2002) ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin Cancer Res 8:3054–3064

    PubMed  CAS  Google Scholar 

  12. Guyotat J, Metellus P, Giorgi R, Barrie M, Jouvet A, Fevre-Montange M, Chinot O, Durand A, Figarella-Branger D (2009) Infratentorial ependymomas: prognostic factors and outcome analysis in a multi-center retrospective series of 106 adult patients. Acta Neurochir (Wien) 151:947–960

    Article  Google Scholar 

  13. Hasselblatt M (2009) Ependymal tumors. Recent Results Cancer Res 171:51–66

    Article  PubMed  Google Scholar 

  14. Healey EA, Barnes PD, Kupsky WJ, Scott RM, Sallan SE, Black PM, Tarbell NJ (1991) The prognostic significance of postoperative residual tumor in ependymoma. Neurosurgery 28:666–671

    Article  PubMed  CAS  Google Scholar 

  15. Jeuken JW, Sprenger SH, Gilhuis J, Teepen HL, Grotenhuis AJ, Wesseling P (2002) Correlation between localization, age, and chromosomal imbalances in ependymal tumours as detected by CGH. J Pathol 197:238–244

    Article  PubMed  Google Scholar 

  16. Johnson RA, Wright KD, Poppleton H et al (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466:632–636

    Article  PubMed  CAS  Google Scholar 

  17. Korshunov A, Golanov A, Timirgaz V (2001) p14ARF protein (FL-132) immunoreactivity in intracranial ependymomas and its prognostic significance: an analysis of 103 cases. Acta Neuropathol 102:271–277

    PubMed  CAS  Google Scholar 

  18. Korshunov A, Golanov A, Timirgaz V (2002) Immunohistochemical markers for prognosis of ependymal neoplasms. J Neurooncol 58:255–270

    Article  PubMed  Google Scholar 

  19. Korshunov A, Neben K, Wrobel G, Tews B, Benner A, Hahn M, Golanov A, Lichter P (2003) Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 163:1721–1727

    Article  PubMed  CAS  Google Scholar 

  20. Korshunov A, Witt H, Hielscher T et al (2010) Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol 28:3182–3190

    Article  PubMed  Google Scholar 

  21. Kuncova K, Janda A, Kasal P, Zamecnik J (2009) Immunohistochemical prognostic markers in intracranial ependymomas: systematic review and meta-analysis. Pathol Oncol Res 15:605–614

    Article  PubMed  Google Scholar 

  22. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  23. Massimino M, Buttarelli FR, Antonelli M, Gandola L, Modena P, Giangaspero F (2009) Intracranial ependymoma: factors affecting outcome. Future Oncol 5:207–216

    Article  PubMed  CAS  Google Scholar 

  24. Modena P, Lualdi E, Facchinetti F et al (2006) Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 24:5223–5233

    Article  PubMed  CAS  Google Scholar 

  25. Palm T, Figarella-Branger D, Chapon F, Lacroix C, Gray F, Scaravilli F, Ellison DW, Salmon I, Vikkula M, Godfraind C (2009) Expression profiling of ependymomas unravels localization and tumor grade-specific tumorigenesis. Cancer 115:3955–3968

    Article  PubMed  CAS  Google Scholar 

  26. Paulino AC (2002) Radiotherapeutic management of intracranial ependymoma. Pediatr Hematol Oncol 19:295–308

    Article  PubMed  Google Scholar 

  27. Peyre M, Commo F, Dantas-Barbosa C et al (2010) Portrait of ependymoma recurrence in children: biomarkers of tumor progression identified by dual-color microarray-based gene expression analysis. PLoS One 5:e12932

    Article  PubMed  Google Scholar 

  28. Pezzolo A, Capra V, Raso A, Morandi F, Parodi F, Gambini C, Nozza P, Giangaspero F, Cama A, Pistoia V, Garre ML (2008) Identification of novel chromosomal abnormalities and prognostic cytogenetics markers in intracranial pediatric ependymoma. Cancer Lett 261:235–243

    Article  PubMed  CAS  Google Scholar 

  29. Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  PubMed  CAS  Google Scholar 

  30. Ridley L, Rahman R, Brundler MA et al (2008) Multifactorial analysis of predictors of outcome in pediatric intracranial ependymoma. Neuro Oncol 10:675–689

    Article  PubMed  CAS  Google Scholar 

  31. Robertson PL, Zeltzer PM, Boyett JM et al (1998) Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J Neurosurg 88:695–703

    Article  PubMed  CAS  Google Scholar 

  32. Rousseau E, Ruchoux MM, Scaravilli F, Chapon F, Vinchon M, De Smet C, Godfraind C, Vikkula M (2003) CDKN2A, CDKN2B and p14ARF are frequently and differentially methylated in ependymal tumours. Neuropathol Appl Neurobiol 29:574–583

    Article  PubMed  CAS  Google Scholar 

  33. Sparano JA, Paik S (2008) Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 26:721–728

    Article  PubMed  Google Scholar 

  34. Suarez-Merino B, Hubank M, Revesz T, Harkness W, Hayward R, Thompson D, Darling JL, Thomas DG, Warr TJ (2005) Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1-q13.3. Neuro Oncol 7:20–31

    Article  PubMed  CAS  Google Scholar 

  35. Taylor MD, Poppleton H, Fuller C et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  PubMed  CAS  Google Scholar 

  36. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  PubMed  CAS  Google Scholar 

  37. Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157

    Article  PubMed  CAS  Google Scholar 

  38. Wolfsberger S, Fischer I, Hoftberger R, Birner P, Slavc I, Dieckmann K, Czech T, Budka H, Hainfellner J (2004) Ki-67 immunolabeling index is an accurate predictor of outcome in patients with intracranial ependymoma. Am J Surg Pathol 28:914–920

    Article  PubMed  Google Scholar 

  39. Zamecnik J, Snuderl M, Eckschlager T, Chanova M, Hladikova M, Tichy M, Kodet R (2003) Pediatric intracranial ependymomas: prognostic relevance of histological, immunohistochemical, and flow cytometric factors. Mod Pathol 16:980–991

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following individuals for their efforts in support of this work. From MD Anderson Cancer Center: Susan Cweren and Mary Jo Reyes; from the University of Pittsburgh Medical Center: Frank Lieberman, Ronald Hamilton, Regina Jakacki, Stephanie Bortoluzzi and Angela Krol; from the Children’s National Medical Center: Amulya Rao, and Ashley Hill; from the University of California, San Francisco: Ashley DeSilva; from St Jude Children’s Research Hospital: Letitia Williams and Annemarie McClellan; from Children’s Memorial Hospital: Kelly Verel and Nicole Reinholdt; from Cincinnati Children’s Hospital: Christine Minges, Lori Davis and Rebecca Turner; from Henry Ford Hospital: Lisa Scarpace; from Memorial Sloan Kettering Cancer Centre: Joseph Parks and Meredith Gondo; from University San Giovanni Battista Torino-Italy: Polly Graziani and Chiara Bosa. This work was supported by the Collaborative Ependymoma Research Network (CERN) Foundation and a SPORE in Brain Cancer grant from the NIH (5 P50 CA127001-03).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Ken Aldape.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tables 1 (DOCX 46 kb)

401_2012_941_MOESM2_ESM.tif

Supplementary Fig. 1 Overall experimental approach for the study. The number of microarray samples from each site is indicated. INDT: Instituto Nazionale Dei Tumori; UCD: University of Colorado at Denver; SJCRH: St. Jude Children’s Research Hospital; VCU: Virginia Commonwealth University. (TIFF 282 kb)

401_2012_941_MOESM3_ESM.tif

Supplementary Fig. 2 Comparison of the transcriptomal Groups 1 and 2 with the Johnson et al posterior fossa subgroups G, H and I. Group 1 tumors are similar to subgroup H and I tumors in their gene expression profile while group 2 tumors resemble subgroup G. (TIFF 673 kb)

401_2012_941_MOESM4_ESM.tif

Supplementary Fig. 3 Expression of TOP2A and its correlation with metagene score and patient survival. a) Immunohistochemical staining for TOP2A showing a negative and positive case. b) Box-whisker plot showing the association of TOP2A staining and metagene score. High TOP2A immunostaining score corresponded with a low metagene score (unfavorable response group) while low TOP2A immunostaining was seen in the high metagene score group (favorable group).The Fisher’s exact test, two-tailed, was used for statistical significance calculation. c-d) Kaplan-Meier survival curves showing a worse progression-free and overall survival in the group of cases that had high levels of TOP2A protein expression as detected by immunohistochemistry. (TIFF 5918 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wani, K., Armstrong, T.S., Vera-Bolanos, E. et al. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123, 727–738 (2012). https://doi.org/10.1007/s00401-012-0941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-0941-4

Keywords

Navigation