Skip to main content

Advertisement

Log in

Persistent retroviral infection with MoMuLV influences neuropathological signature and phenotype of prion disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

A fundamental step in pathophysiology of prion diseases is the conversion of the host encoded prion protein (PrPC) into a misfolded isoform (PrPSc) that accumulates mainly in neuronal but also non-neuronal tissues. Prion diseases are transmissible within and between species. In a subset of prion diseases, peripheral prion uptake and subsequent transport to the central nervous system are key to disease initiation. The involvement of retroviruses in this process has been postulated based on the findings that retroviral infections enhance the spread of prion infectivity and PrPSc from cell to cell in vitro. To study whether retroviral infection influences the phenotype of prion disease or the spread of prion infectivity and PrPSc in vivo, we developed a murine model with persistent Moloney murine leukemia retrovirus (MoMuLV) infection with and without additional prion infection. We investigated the pathophysiology of prion disease in MoMuLV and prion-infected mice, monitoring temporal kinetics of PrPSc spread and prion infectivity, as well as clinical presentation. Unexpectedly, infection of MoMuLV challenged mice with prions did not change incubation time to clinical prion disease. However, clinical presentation of prion disease was altered in mice infected with both pathogens. This was paralleled by remarkably enhanced astrogliosis and pathognomonic astrocyte morphology in the brain of these mice. Therefore, we conclude that persistent viral infection might act as a disease modifier in prion disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aguzzi A (2004) Understanding the diversity of prions. Nat Cell Biol 6(4):290–292

    Article  PubMed  CAS  Google Scholar 

  2. Aguzzi A, Raeber A, Blattler T, Flechsig E, Klein M, Weissmann C, Brandner S (1997) Neurotoxicity and neuroinvasiveness of prions. J Neurovirol 3(Suppl 1):S23–S24

    PubMed  Google Scholar 

  3. Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL, Leblanc P (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100(10):603–615

    Article  PubMed  CAS  Google Scholar 

  4. Anderson GW, Palmer GA, Rowland RR, Even C, Plagemann PG (1995) Infection of central nervous system cells by ecotropic murine leukemia virus in C58 and AKR mice and in in utero-infected CE/J mice predisposes mice to paralytic infection by lactate dehydrogenase-elevating virus. J Virol 69(1):308–319

    PubMed  CAS  Google Scholar 

  5. Balkema-Buschmann A, Eiden M, Hoffmann C, Kaatz M, Ziegler U, Keller M, Groschup MH (2011) BSE infectivity in the absence of detectable PrP(Sc) accumulation in the tongue and nasal mucosa of terminally diseased cattle. J Gen Virol 92(Pt 2):467–476

    Article  PubMed  CAS  Google Scholar 

  6. Barron RM, Campbell SL, King D, Bellon A, Chapman KE, Williamson RA, Manson JC (2007) High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrPSc in vivo. J Biol Chem 282(49):35878–35886

    Article  PubMed  CAS  Google Scholar 

  7. Bofill M, Akbar AN, Amlot PL (2000) Follicular dendritic cells share a membrane-bound protein with fibroblasts. J Pathol 191(2):217–226

    Article  PubMed  CAS  Google Scholar 

  8. Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379(6563):339–343

    Article  PubMed  CAS  Google Scholar 

  9. Brandner S, Klein MA, Frigg R, Pekarik V, Parizek P, Raeber A, Glatzel M, Schwarz P, Rulicke T, Weissmann C, Aguzzi A (2000) Neuroinvasion of prions: insights from mouse models. Exp Physiol 85(6):705–712

    Article  PubMed  CAS  Google Scholar 

  10. Brown KL, Stewart K, Ritchie DL, Mabbott NA, Williams A, Fraser H, Morrison WI, Bruce ME (1999) Scrapie replication in lymphoid tissues depends on prion protein- expressing follicular dendritic cells. Nat Med 5(11):1308–1312

    Article  PubMed  CAS  Google Scholar 

  11. Budka H, Aguzzi A, Brown P, Brucher JM, Bugiani O, Gullotta F, Haltia M, Hauw JJ, Ironside JW, Jellinger K et al (1995) Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol 5(4):459–466

    Article  PubMed  CAS  Google Scholar 

  12. Campana V, Sarnataro D, Zurzolo C (2005) The highways and byways of prion protein trafficking. Trends Cell Biol 15(2):102–111

    Article  PubMed  CAS  Google Scholar 

  13. Carp RI, Meeker HC, Caruso V, Sersen E (1999) Scrapie strain-specific interactions with endogenous murine leukaemia virus. J Gen Virol 80(Pt 1):5–10

    PubMed  CAS  Google Scholar 

  14. Caruso P, Burla R, Piersanti S, Cherubini G, Remoli C, Martina Y, Saggio I (2009) Prion expression is activated by adenovirus 5 infection and affects the adenoviral cycle in human cells. Virology 385(2):343–350

    Article  PubMed  CAS  Google Scholar 

  15. Caughey B, Raymond GJ, Ernst D, Race RE (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65(12):6597–6603

    PubMed  CAS  Google Scholar 

  16. Chesebro B, Britt W, Evans L, Wehrly K, Nishio J, Cloyd M (1983) Characterization of monoclonal antibodies reactive with murine leukemia viruses: use in analysis of strains of friend MCF and friend ecotropic murine leukemia virus. Virology 127(1):134–148

    Article  PubMed  CAS  Google Scholar 

  17. Cohen FE, Pan KM, Huang Z, Baldwin M, Fletterick RJ, Prusiner SB (1994) Structural clues to prion replication. Science 264(5158):530–531

    Article  PubMed  CAS  Google Scholar 

  18. Collinge J, Sidle KC, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383(6602):685–690

    Article  PubMed  CAS  Google Scholar 

  19. Fischer M, Rülicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A, Weissmann C (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15(6):1255–1264

    PubMed  CAS  Google Scholar 

  20. Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol 8(3):449–457

    Article  PubMed  CAS  Google Scholar 

  21. Glatzel M, Abela E, Maissen M, Aguzzi A (2003) Extraneural pathologic prion protein in sporadic Creutzfeldt–Jakob disease. N Engl J Med 349(19):1812–1820

    Article  PubMed  CAS  Google Scholar 

  22. Glatzel M, Brandner S, Klein MA, Aguzzi A (2001) Prions: from neurografts to neuroinvasion. Methods Mol Med 59:129–147. doi:10.1385/1-59259-134-5:129

    PubMed  CAS  Google Scholar 

  23. Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T, Itohara S (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14(1):29–41

    Article  PubMed  CAS  Google Scholar 

  24. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336

    Article  PubMed  CAS  Google Scholar 

  25. Gousset K, Zurzolo C (2009) Tunnelling nanotubes: a highway for prion spreading? Prion 3(2):94–98

    Article  PubMed  CAS  Google Scholar 

  26. Greenwood AD, Vincendeau M, Schmadicke AC, Montag J, Seifarth W, Motzkus D (2011) Bovine spongiform encephalopathy infection alters endogenous retrovirus expression in distinct brain regions of cynomolgus macaques (Macaca fascicularis). Mol Neurodegener 6(1):44

    Article  PubMed  CAS  Google Scholar 

  27. Harbers K, Schnieke A, Stuhlmann H, Jahner D, Jaenisch R (1981) DNA methylation and gene expression: endogenous retroviral genome becomes infectious after molecular cloning. Proc Natl Acad Sci USA 78(12):7609–7613

    Article  PubMed  CAS  Google Scholar 

  28. Haybaeck J, Heikenwalder M, Klevenz B, Schwarz P, Margalith I, Bridel C, Mertz K, Zirdum E, Petsch B, Fuchs TJ, Stitz L, Aguzzi A (2011) Aerosols transmit prions to immunocompetent and immunodeficient mice. PLoS Pathog 7(1):e1001257

    Article  PubMed  CAS  Google Scholar 

  29. Herzog C, Sales N, Etchegaray N, Charbonnier A, Freire S, Dormont D, Deslys JP, Lasmezas CI (2004) Tissue distribution of bovine spongiform encephalopathy agent in primates after intravenous or oral infection. Lancet 363(9407):422–428

    Article  PubMed  CAS  Google Scholar 

  30. Horiuchi M, Caughey B (1999) Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J 18(12):3193–3203

    Article  PubMed  CAS  Google Scholar 

  31. Ironside JW, Head MW (2004) Variant Creutzfeldt–Jakob disease: risk of transmission by blood and blood products. Haemophilia 10(Suppl 4):64–69

    Article  PubMed  Google Scholar 

  32. Ironside JW, Ritchie DL, Head MW (2005) Phenotypic variability in human prion diseases. Neuropathol Appl Neurobiol 31(6):565–579

    Article  PubMed  CAS  Google Scholar 

  33. Jeong BH, Lee YJ, Carp RI, Kim YS (2010) The prevalence of human endogenous retroviruses in cerebrospinal fluids from patients with sporadic Creutzfeldt–Jakob disease. J Clin Virol 47(2):136–142

    Article  PubMed  CAS  Google Scholar 

  34. Kadowaki T, Nakadate K, Sakakibara S, Hirata K, Ueda S (2007) Expression of Iba1 protein in microglial cells of zitter mutant rat. Neurosci Lett 411(1):26–31

    Article  PubMed  CAS  Google Scholar 

  35. Kranich J, Krautler NJ, Heinen E, Polymenidou M, Bridel C, Schildknecht A, Huber C, Kosco-Vilbois MH, Zinkernagel R, Miele G, Aguzzi A (2008) Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. J Exp Med 205(6):1293–1302

    Article  PubMed  CAS  Google Scholar 

  36. Krasemann S, Neumann M, Geissen M, Bodemer W, Kaup FJ, Schulz-Schaeffer W, Morel N, Aguzzi A, Glatzel M (2010) Preclinical deposition of pathological prion protein in muscle of experimentally infected primates. PLoS ONE 5(11):e13906

    Article  PubMed  Google Scholar 

  37. Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122(1):1–5

    PubMed  CAS  Google Scholar 

  38. Kuang X, Scofield VL, Yan M, Stoica G, Liu N, Wong PK (2009) Attenuation of oxidative stress, inflammation and apoptosis by minocycline prevents retrovirus-induced neurodegeneration in mice. Brain Res 1286:174–184

    Article  PubMed  CAS  Google Scholar 

  39. Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J, Raposo G, Darlix JL (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25(12):2674–2685

    Article  PubMed  CAS  Google Scholar 

  40. Leblanc P, Baas D, Darlix JL (2004) Analysis of the interactions between HIV-1 and the cellular prion protein in a human cell line. J Mol Biol 337(4):1035–1051

    Article  PubMed  CAS  Google Scholar 

  41. Lee IY, Choe J (2003) Human follicular dendritic cells and fibroblasts share the 3C8 antigen. Biochem Biophys Res Commun 304(4):701–707

    Article  PubMed  CAS  Google Scholar 

  42. Lee KH, Jeong BH, Jin JK, Meeker HC, Kim JI, Carp RI, Kim YS (2006) Scrapie infection activates the replication of ecotropic, xenotropic, and polytropic murine leukemia virus (MuLV) in brains and spinal cords of senescence-accelerated mice: implication of MuLV in progression of scrapie pathogenesis. Biochem Biophys Res Commun 349(1):122–130

    Article  PubMed  CAS  Google Scholar 

  43. Legname G, Nguyen HO, Baskakov IV, Cohen FE, Dearmond SJ, Prusiner SB (2005) Strain-specified characteristics of mouse synthetic prions. Proc Natl Acad Sci USA 102(6):2168–2173

    Article  PubMed  CAS  Google Scholar 

  44. Li Y, Cardona SM, Traister RS, Lynch WP (2011) Retrovirus-induced spongiform neurodegeneration is mediated by unique central nervous system viral targeting and expression of env alone. J Virol 85(5):2060–2078

    Article  PubMed  CAS  Google Scholar 

  45. Ligios C, Cancedda MG, Carta A, Santucciu C, Maestrale C, Demontis F, Saba M, Patta C, DeMartini JC, Aguzzi A, Sigurdson CJ (2011) Sheep with scrapie and mastitis transmit infectious prions through the milk. J Virol 85(2):1136–1139

    Article  PubMed  CAS  Google Scholar 

  46. Ligios C, Sigurdson CJ, Santucciu C, Carcassola G, Manco G, Basagni M, Maestrale C, Cancedda MG, Madau L, Aguzzi A (2005) PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nat Med 11(11):1137–1138

    Article  PubMed  CAS  Google Scholar 

  47. Liu XH, Xu W, Russ J, Eiden LE, Eiden MV (2011) The host range of gammaretroviruses and gammaretroviral vectors includes post-mitotic neural cells. PLoS One 6(3):e18072

    Article  PubMed  CAS  Google Scholar 

  48. Lotscher M, Recher M, Lang KS, Navarini A, Hunziker L, Santimaria R, Glatzel M, Schwarz P, Boni J, Zinkernagel RM (2007) Induced prion protein controls immune-activated retroviruses in the mouse spleen. PLoS One 2(11):e1158

    Article  PubMed  Google Scholar 

  49. Lynch WP, Snyder EY, Qualtiere L, Portis JL, Sharpe AH (1996) Late virus replication events in microglia are required for neurovirulent retrovirus-induced spongiform neurodegeneration: evidence from neural progenitor-derived chimeric mouse brains. J Virol 70(12):8896–8907

    PubMed  CAS  Google Scholar 

  50. Mabbott N, Turner M (2005) Prions and the blood and immune systems. Haematologica 90(4):542–548

    PubMed  CAS  Google Scholar 

  51. Magalhaes AC, Baron GS, Lee KS, Steele-Mortimer O, Dorward D, Prado MA, Caughey B (2005) Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J Neurosci 25(21):5207–5216

    Article  PubMed  CAS  Google Scholar 

  52. Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302(5646):871–874

    Article  PubMed  CAS  Google Scholar 

  53. Mead S, Poulter M, Uphill J, Beck J, Whitfield J, Webb TE, Campbell T, Adamson G, Deriziotis P, Tabrizi SJ, Hummerich H, Verzilli C, Alpers MP, Whittaker JC, Collinge J (2009) Genetic risk factors for variant Creutzfeldt–Jakob disease: a genome-wide association study. Lancet Neurol 8(1):57–66

    Article  PubMed  Google Scholar 

  54. Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F, Aguzzi A, Weissmann C (2000) Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288(5469):1257–1259

    Article  PubMed  CAS  Google Scholar 

  55. Munk C, Lohler J, Prassolov V, Just U, Stockschlader M, Stocking C (1997) Amphotropic murine leukemia viruses induce spongiform encephalomyelopathy. Proc Natl Acad Sci USA 94(11):5837–5842

    Article  PubMed  CAS  Google Scholar 

  56. Neumann M (2009) Phenotypic heterogeneity and genetic modifiers in prion disease caused by a Pro102Leu mutation in the PRNP gene. Nat Clin Pract Neurol 5(2):68–69

    Article  PubMed  CAS  Google Scholar 

  57. Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I, Budka H, Kopp N, Piccardo P, Poser S, Rojiani A, Streichemberger N, Julien J, Vital C, Ghetti B, Gambetti P, Kretzschmar H (1999) Classification of sporadic Creutzfeldt–Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46(2):224–233

    Article  PubMed  CAS  Google Scholar 

  58. Parchi P, Strammiello R, Giese A, Kretzschmar H (2011) Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol 121(1):91–112

    Article  PubMed  CAS  Google Scholar 

  59. Pollak L, Shabazov E, Mendlovic S, Rabey MJ (2008) Herpes simplex encephalitis as an initial presentation of Creutzfeldt-Jakob disease. Isr Med Assoc J 10(5):392–394

    PubMed  Google Scholar 

  60. Polymenidou M, Moos R, Scott M, Sigurdson C, Shi YZ, Yajima B, Hafner-Bratkovic I, Jerala R, Hornemann S, Wuthrich K, Bellon A, Vey M, Garen G, James MN, Kav N, Aguzzi A (2008) The POM monoclonals: a comprehensive set of antibodies to non-overlapping prion protein epitopes. PLoS ONE 3(12):e3872

    Article  PubMed  Google Scholar 

  61. Portis JL (2001) Genetic determinants of neurovirulence of murine oncornaviruses. Adv Virus Res 56:3–38

    Article  PubMed  CAS  Google Scholar 

  62. Porto-Carreiro I, Fevrier B, Paquet S, Vilette D, Raposo G (2005) Prions and exosomes: from PrPc trafficking to PrPsc propagation. Blood Cells Mol Dis 35(2):143–148

    Article  PubMed  CAS  Google Scholar 

  63. Prinz M, Heikenwalder M, Junt T, Schwarz P, Glatzel M, Heppner FL, Fu YX, Lipp M, Aguzzi A (2003) Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425(6961):957–962

    Article  PubMed  CAS  Google Scholar 

  64. Prinz M, Heikenwalder M, Schwarz P, Takeda K, Akira S, Aguzzi A (2003) Prion pathogenesis in the absence of Toll-like receptor signalling. EMBO Rep 4(2):195–199

    Article  PubMed  CAS  Google Scholar 

  65. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144

    Article  PubMed  CAS  Google Scholar 

  66. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383

    Article  PubMed  CAS  Google Scholar 

  67. Raeber AJ, Race RE, Brandner S, Priola SA, Sailer A, Bessen RA, Mucke L, Manson J, Aguzzi A, Oldstone MB, Weissmann C, Chesebro B (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J 16(20):6057–6065

    Article  PubMed  CAS  Google Scholar 

  68. Roberts TK, Eugenin EA, Morgello S, Clements JE, Zink MC, Berman JW (2010) PrPC, the cellular isoform of the human prion protein, is a novel biomarker of HIV-associated neurocognitive impairment and mediates neuroinflammation. Am J Pathol 177(4):1848–1860

    Article  PubMed  CAS  Google Scholar 

  69. Rodenburg M, Fischer M, Engelmann A, Harbers SO, Ziegler M, Lohler J, Stocking C (2007) Importance of receptor usage, Fli1 activation, and mouse strain for the stem cell specificity of 10A1 murine leukemia virus leukemogenicity. J Virol 81(2):732–742

    Article  PubMed  CAS  Google Scholar 

  70. Schoch G, Seeger H, Bogousslavsky J, Tolnay M, Janzer RC, Aguzzi A, Glatzel M (2006) Analysis of prion strains by PrPSc profiling in sporadic Creutzfeldt–Jakob disease. PLoS Med 3(2):e14

    Article  PubMed  Google Scholar 

  71. Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C (2002) AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 196(9):1227–1240

    Article  PubMed  CAS  Google Scholar 

  72. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  73. Stanton JB, Knowles DP, O’Rourke KI, Herrmann-Hoesing LM, Mathison BA, Baszler TV (2008) Small-ruminant lentivirus enhances PrPSc accumulation in cultured sheep microglial cells. J Virol 82(20):9839–9847

    Article  PubMed  CAS  Google Scholar 

  74. Stengel A, Bach C, Vorberg I, Frank O, Gilch S, Lutzny G, Seifarth W, Erfle V, Maas E, Schatzl H, Leib-Mosch C, Greenwood AD (2006) Prion infection influences murine endogenous retrovirus expression in neuronal cells. Biochem Biophys Res Commun 343(3):825–831

    Article  PubMed  CAS  Google Scholar 

  75. Tatzelt J, Maeda N, Pekny M, Yang SL, Betsholtz C, Eliasson C, Cayetano J, Camerino AP, DeArmond SJ, Prusiner SB (1996) Scrapie in mice deficient in apolipoprotein E or glial fibrillary acidic protein. Neurology 47(2):449–453

    Article  PubMed  CAS  Google Scholar 

  76. Thomzig A, Kratzel C, Lenz G, Kruger D, Beekes M (2003) Widespread PrP(Sc) accumulation in muscles of hamsters orally infected with scrapie. EMBO Rep 4(5):1–4

    Article  Google Scholar 

  77. Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A, Laude H, Beringue V (2010) The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog 6(4):e1000859

    Article  PubMed  Google Scholar 

  78. Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211(5):582–590

    Article  PubMed  CAS  Google Scholar 

  79. Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37(3):323–332

    Article  PubMed  CAS  Google Scholar 

  80. Wadsworth JD, Collinge J (2011) Molecular pathology of human prion disease. Acta Neuropathol 121(1):69–77

    Article  PubMed  CAS  Google Scholar 

  81. Wadsworth JDF, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ, Collinge J (2001) Tissue distribution of protease resistant prion protein in variant CJD using a highly sensitive immuno-blotting assay. Lancet 358:171–180

    Article  PubMed  CAS  Google Scholar 

  82. Webb TE, Poulter M, Beck J, Uphill J, Adamson G, Campbell T, Linehan J, Powell C, Brandner S, Pal S, Siddique D, Wadsworth JD, Joiner S, Alner K, Petersen C, Hampson S, Rhymes C, Treacy C, Storey E, Geschwind MD, Nemeth AH, Wroe S, Collinge J, Mead S (2008) Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series. Brain 131(Pt 10):2632–2646

    Article  PubMed  CAS  Google Scholar 

  83. Wong PK, Yuen PH (1994) Cell types in the central nervous system infected by murine retroviruses: implications for the mechanisms of neurodegeneration. Histol Histopathol 9(4):845–858

    PubMed  CAS  Google Scholar 

  84. Xue QS, Yang C, Hoffman PM, Streit WJ (2010) Microglial response to murine leukemia virus-induced encephalopathy is a good indicator of neuronal perturbations. Brain Res 1319:131–141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank U. Mueller, S. Deutsch, and the mouse pathology core facility of the UKE for technical assistance. This work is supported by grants of the Deutsche Forschungsgemeinschaft (FOR885 and GRK1459 to M.G.), the Landesexzellenzinitiative of Hamburg (SDI-LEXI) to M.G. and a pro-exzellenzia grant (city of Hamburg) and the BMBF-grant 01GZ0712 to S.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Glatzel.

Additional information

J.-P. Luepke: Deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 21295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasemann, S., Neumann, M., Luepke, JP. et al. Persistent retroviral infection with MoMuLV influences neuropathological signature and phenotype of prion disease. Acta Neuropathol 124, 111–126 (2012). https://doi.org/10.1007/s00401-012-0944-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-0944-1

Keywords

Navigation