Skip to main content

Advertisement

Log in

Co-occurrence of mixed proteinopathies in late-stage Huntington’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Accumulating evidence highlights the potential role of mixed proteinopathies (i.e., abnormal protein aggregation) in the development of clinical manifestations of neurodegenerative diseases (NDD). Huntington’s disease (HD) is an inherited NDD caused by autosomal-dominant expanded CAG trinucleotide repeat mutation in the gene coding for Huntingtin (Htt). Previous studies have suggested the coexistence of phosphorylated-Tau, α-synuclein (α-Syn) and TAR DNA-binding protein 43 (TDP-43) inclusions in HD. However, definite evidence that HD pathology in humans can be accompanied by other proteinopathies is still lacking. Using human post-mortem putamen samples from 31 controls and 56 HD individuals, we performed biochemical analyses of the expression, oligomerization and aggregation of Tau, α-Syn, TDP-43, and Amyloid precursor protein (APP)/Aβ. In HD brain, we observed reduced soluble protein (but not mRNA) levels of Htt, α-Syn, and Tau. Our results also support abnormal phosphorylation of Tau in more advanced stages of disease. Aberrant splicing of Tau exons 2, 3 (exclusion) and 10 (inclusion) was also detected in HD patients, leading to higher 0N4R and lower 1N3R isoforms. Finally, following formic acid extraction, we observed increased aggregation of TDP-43, α-Syn, and phosphorylated-Tau during HD progression. Notably, we observed that 88% of HD patients with Vonsattel grade 4 neuropathology displayed at least one non-Htt proteinopathy compared to 29% in controls. Interestingly, α-Syn aggregation correlated with Htt, TDP-43 and phosphorylated-Tau in HD but not in controls. The impact of this work is twofold: (1) it provides compelling evidences that Tau, α-Syn and TDP-43 proteinopathies are increased in HD, and (2) it suggests the involvement of common mechanisms leading to abnormal accumulation of aggregation-prone proteins in NDD. Further studies will be needed to decipher the impact of these proteinopathies on clinical manifestation of HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arai T, Mackenzie IR, Hasegawa M et al (2009) Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol 117:125–136. https://doi.org/10.1007/s00401-008-0480-1

    Article  CAS  PubMed  Google Scholar 

  2. Aronin N, Chase K, Young C et al (1995) CAG expansion affects the expression of mutant Huntingtin in the Huntington’s disease brain. Neuron 15:1193–1201

    Article  CAS  PubMed  Google Scholar 

  3. Blum D, Herrera F, Francelle L et al (2015) Mutant huntingtin alters Tau phosphorylation and subcellular distribution. Hum Mol Genet 24:76–85. https://doi.org/10.1093/hmg/ddu421

    Article  CAS  PubMed  Google Scholar 

  4. Braisch U, Hay B, Muche R et al (2017) Identification of extreme motor phenotypes in Huntington’s disease. Am J Med Genet B Neuropsychiatr Genet 174:283–294. https://doi.org/10.1002/ajmg.b.32514

    Article  CAS  PubMed  Google Scholar 

  5. Buée L, Bussière T, Buée-Scherrer V et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    Article  PubMed  Google Scholar 

  6. Caillet-Boudin ML, Buée L, Sergeant N, Lefebvre B (2015) Regulation of human MAPT gene expression. Mol Neurodegener 10:28. https://doi.org/10.1186/s13024-015-0025-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Charles V, Mezey E, Reddy PH et al (2000) Alpha-synuclein immunoreactivity of huntingtin polyglutamine aggregates in striatum and cortex of Huntington’s disease patients and transgenic mouse models. Neurosci Lett 289:29–32

    Article  CAS  PubMed  Google Scholar 

  8. Conrad C, Zhu J, Conrad C et al (2007) Single molecule profiling of tau gene expression in Alzheimer’s disease. J Neurochem 103:1228–1236. https://doi.org/10.1111/j.1471-4159.2007.04857.x

    Article  CAS  PubMed  Google Scholar 

  9. Corrochano S, Renna M, Carter S et al (2012) α-Synuclein levels modulate Huntington’s disease in mice. Hum Mol Genet 21:485–494. https://doi.org/10.1093/hmg/ddr477

    Article  CAS  PubMed  Google Scholar 

  10. Cubillos-Rojas M, Amair-Pinedo F, Tato I et al (2010) Simultaneous electrophoretic analysis of proteins of very high and low molecular mass using Tris-acetate polyacrylamide gels. Electrophoresis 31:1318–1321. https://doi.org/10.1002/elps.200900657

    Article  CAS  PubMed  Google Scholar 

  11. Davis MY, Keene CD, Jayadev S et al (2014) The co-occurrence of Alzheimer’s disease and Huntington’s disease: a neuropathological study of 15 elderly Huntington’s disease subjects. J Huntingtons Dis 3:209–217. https://doi.org/10.3233/JHD-140111

    CAS  PubMed  Google Scholar 

  12. DiFiglia M, Sapp E, Chase KO et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    Article  CAS  PubMed  Google Scholar 

  13. Edmonds EC, Bangen KJ, Delano-Wood L et al (2016) Patterns of cortical and subcortical amyloid burden across stages of preclinical Alzheimer’s disease. J Int Neuropsychol Soc 22:978–990. https://doi.org/10.1017/S1355617716000928

    Article  PubMed  PubMed Central  Google Scholar 

  14. Elobeid A, Libard S, Leino M et al (2016) Altered proteins in the aging brain. J Neuropathol Exp Neurol 75:316–325. https://doi.org/10.1093/jnen/nlw002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fernandez-Nogales M, Cabrera JR, Santos-Galindo M et al (2014) Huntington’s disease is a four-repeat tauopathy with tau nuclear rods. Nat Med 20:881–885. https://doi.org/10.1038/nm.3617

    Article  CAS  PubMed  Google Scholar 

  16. Fourie C, Kim E, Waldvogel H et al (2014) Differential changes in postsynaptic density proteins in postmortem Huntington’s disease and Parkinson’s disease human brains. J Neurodegener Dis 2014:938530. https://doi.org/10.1155/2014/938530

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Golde TE, Borchelt DR, Giasson BI et al (2013) Thinking laterally about neurodegenerative proteinopathies. J Clin Invest 123:1847–1855. https://doi.org/10.1172/JCI66029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gratuze M, Cisbani G, Cicchetti F et al (2016) Is Huntington’s disease a tauopathy. Brain 139:1014–1025. https://doi.org/10.1093/brain/aww021

    Article  PubMed  Google Scholar 

  19. Gratuze M, Noël A, Julien C et al (2015) Tau hyperphosphorylation and deregulation of calcineurin in mouse models of Huntington’s disease. Hum Mol Genet 24:86–99. https://doi.org/10.1093/hmg/ddu456

    Article  CAS  PubMed  Google Scholar 

  20. Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 87:5827–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hensman Moss DJ, Flower MD, Lo KK et al (2017) Huntington’s disease blood and brain show a common gene expression pattern and share an immune signature with Alzheimer’s disease. Sci Rep 7:44849. https://doi.org/10.1038/srep44849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hernandez-Rapp J, Rainone S, Goupil C et al (2016) microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci Rep 6:30953. https://doi.org/10.1038/srep30953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hodges A, Strand AD, Aragaki AK et al (2006) Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 15:965–977. https://doi.org/10.1093/hmg/ddl013

    Article  CAS  PubMed  Google Scholar 

  24. Hoffner G, Djian P (2014) Monomeric, oligomeric and polymeric proteins in huntington disease and other diseases of polyglutamine expansion. Brain Sci 4:91–122. https://doi.org/10.3390/brainsci4010091

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoffner G, Island ML, Djian P (2005) Purification of neuronal inclusions of patients with Huntington’s disease reveals a broad range of N-terminal fragments of expanded huntingtin and insoluble polymers. J Neurochem 95:125–136. https://doi.org/10.1111/j.1471-4159.2005.03348.x

    Article  CAS  PubMed  Google Scholar 

  26. Hosokawa M, Kondo H, Serrano GE et al (2017) Accumulation of multiple neurodegenerative disease-related proteins in familial frontotemporal lobar degeneration associated with granulin mutation. Sci Rep 7:1513. https://doi.org/10.1038/s41598-017-01587-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jacobs M, Hart EP, van Zwet EW et al (2016) Progression of motor subtypes in Huntington’s disease: a 6-year follow-up study. J Neurol 263:2080–2085. https://doi.org/10.1007/s00415-016-8233-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jellinger KA (1998) Alzheimer-type lesions in Huntington’s disease. J Neural Transm (Vienna) 105:787–799. https://doi.org/10.1007/s007020050095

    Article  CAS  Google Scholar 

  29. Jellinger KA, Attems J (2015) Challenges of multimorbidity of the aging brain: a critical update. J Neural Transm (Vienna) 122:505–521. https://doi.org/10.1007/s00702-014-1288-x

    Article  Google Scholar 

  30. Josephs KA, Whitwell JL, Tosakulwong N et al (2015) TAR DNA-binding protein 43 and pathological subtype of Alzheimer’s disease impact clinical features. Ann Neurol 78:697–709. https://doi.org/10.1002/ana.24493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Julien C, Bretteville A, Planel E (2012) Biochemical isolation of insoluble tau in transgenic mouse models of tauopathies. Methods Mol Biol 849:473–491. https://doi.org/10.1007/978-1-61779-551-0_32

    Article  CAS  PubMed  Google Scholar 

  32. Kametani F, Obi T, Shishido T et al (2016) Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep 6:23281. https://doi.org/10.1038/srep23281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanai K, Kuwabara S, Sawai S et al (2008) Genetically confirmed Huntington’s disease masquerading as motor neuron disease. Mov Disord 23:748–751. https://doi.org/10.1002/mds.21937

    Article  PubMed  Google Scholar 

  34. Kloppel S, Gregory S, Scheller E et al (2015) Compensation in preclinical Huntington’s disease: evidence from the track-on HD study. EBioMedicine 2:1420–1429. https://doi.org/10.1016/j.ebiom.2015.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kovacs GG, Murrell JR, Horvath S et al (2009) TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 24:1843–1847. https://doi.org/10.1002/mds.22697

    Article  PubMed  Google Scholar 

  36. L’Episcopo F, Drouin-Ouellet J, Tirolo C et al (2016) GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington’s disease: involvement of astrocyte–neuron interactions. Cell Death Dis 7:e2206. https://doi.org/10.1038/cddis.2016.104

    Article  PubMed  PubMed Central  Google Scholar 

  37. Labadorf A, Hoss AG, Lagomarsino V et al (2015) RNA sequence analysis of human huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS One 10:e0143563. https://doi.org/10.1371/journal.pone.0143563

    Article  PubMed  PubMed Central  Google Scholar 

  38. Landwehrmeyer GB, McNeil SM, Dure LS et al (1995) Huntington’s disease gene: regional and cellular expression in brain of normal and affected individuals. Ann Neurol 37:218–230. https://doi.org/10.1002/ana.410370213

    Article  CAS  PubMed  Google Scholar 

  39. Larson ME, Sherman MA, Greimel S et al (2012) Soluble α-synuclein is a novel modulator of Alzheimer’s disease pathophysiology. J Neurosci 32:10253–10266. https://doi.org/10.1523/JNEUROSCI.0581-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lautenschlager J, Kaminski CF, Kaminski Schierle GS (2017) α-Synuclein—regulator of exocytosis, endocytosis, or both. Trends Cell Biol 27:468–479. https://doi.org/10.1016/j.tcb.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  41. Liu C, Götz J (2013) Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. PLoS One 8:e84849. https://doi.org/10.1371/journal.pone.0084849

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mason SL, Zhang J, Begeti F et al (2015) The role of the amygdala during emotional processing in Huntington’s disease: from pre-manifest to late stage disease. Neuropsychologia 70:80–89. https://doi.org/10.1016/j.neuropsychologia.2015.02.017

    Article  PubMed  PubMed Central  Google Scholar 

  43. Masuda-Suzukake M, Nonaka T, Hosokawa M et al (2014) Pathological alpha-synuclein propagates through neural networks. Acta Neuropathol Commun 2:88. https://doi.org/10.1186/PREACCEPT-1296467154135944

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mehrabi NF, Waldvogel HJ, Tippett LJ et al (2016) Symptom heterogeneity in Huntington’s disease correlates with neuronal degeneration in the cerebral cortex. Neurobiol Dis 96:67–74. https://doi.org/10.1016/j.nbd.2016.08.015

    Article  PubMed  Google Scholar 

  45. Miller JR, Lo KK, Andre R et al (2016) RNA-Seq of Huntington’s disease patient myeloid cells reveals innate transcriptional dysregulation associated with proinflammatory pathway activation. Hum Mol Genet 25:2893–2904. https://doi.org/10.1093/hmg/ddw142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakabayashi J, Yoshimura M, Morishima-Kawashima M et al (1998) Amyloid beta-protein (A beta) accumulation in the putamen and mammillary body during aging and in Alzheimer disease. J Neuropathol Exp Neurol 57:343–352

    Article  CAS  PubMed  Google Scholar 

  47. Niblock M, Gallo JM (2012) Tau alternative splicing in familial and sporadic tauopathies. Biochem Soc Trans 40:677–680. https://doi.org/10.1042/BST20120091

    Article  CAS  PubMed  Google Scholar 

  48. Orth M, Handley OJ, Schwenke C et al (2010) Observing Huntington’s disease: the European Huntington’s disease network’s REGISTRY. PLoS Curr 2:184. https://doi.org/10.1371/currents.RRN1184

    Google Scholar 

  49. Papageorgiou SG, Antelli A, Bonakis A et al (2006) Association of genetically proven Huntington’s disease and sporadic amyotrophic lateral sclerosis in a 72-year-old woman. J Neurol 253:1649–1650. https://doi.org/10.1007/s00415-006-0267-z

    Article  PubMed  Google Scholar 

  50. Papoutsi M, Labuschagne I, Tabrizi SJ et al (2014) The cognitive burden in Huntington’s disease: pathology, phenotype, and mechanisms of compensation. Mov Disord 29:673–683. https://doi.org/10.1002/mds.25864

    Article  PubMed  Google Scholar 

  51. Park SA, Ahn SI, Gallo JM (2016) Tau mis-splicing in the pathogenesis of neurodegenerative disorders. BMB Rep 49:405–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Penney JB, Vonsattel JP, MacDonald ME et al (1997) CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol 41:689–692. https://doi.org/10.1002/ana.410410521

    Article  PubMed  Google Scholar 

  53. Petry FR, Pelletier J, Bretteville A et al (2014) Specificity of anti-tau antibodies when analyzing mice models of Alzheimer’s disease: problems and solutions. PLoS One 9:e94251. https://doi.org/10.1371/journal.pone.0094251

    Article  PubMed  PubMed Central  Google Scholar 

  54. Poças GM, Branco-Santos J, Herrera F et al (2015) α-Synuclein modifies mutant huntingtin aggregation and neurotoxicity in Drosophila. Hum Mol Genet 24:1898–1907. https://doi.org/10.1093/hmg/ddu606

    Article  PubMed  Google Scholar 

  55. Rosa FE, Silveira SM, Silveira CG et al (2009) Quantitative real-time RT-PCR and chromogenic in situ hybridization: precise methods to detect HER-2 status in breast carcinoma. BMC Cancer 9:90. https://doi.org/10.1186/1471-2407-9-90

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rosas HD, Salat DH, Lee SY et al (2008) Complexity and heterogeneity: what drives the ever-changing brain in Huntington’s disease. Ann N Y Acad Sci 1147:196–205. https://doi.org/10.1196/annals.1427.034

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rosenblatt A, Kumar BV, Mo A et al (2012) Age, CAG repeat length, and clinical progression in Huntington’s disease. Mov Disord 27:272–276. https://doi.org/10.1002/mds.24024

    Article  PubMed  Google Scholar 

  58. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98. https://doi.org/10.1016/S1474-4422(10)70245-3

    Article  CAS  PubMed  Google Scholar 

  59. Rüb U, Seidel K, Heinsen H et al (2016) Huntington’s disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol 26:726–740. https://doi.org/10.1111/bpa.12426

    Article  PubMed  Google Scholar 

  60. Sadeghian H, O’Suilleabhain PE, Battiste J et al (2011) Huntington chorea presenting with motor neuron disease. Arch Neurol 68:650–652. https://doi.org/10.1001/archneurol.2011.76

    Article  PubMed  Google Scholar 

  61. Schilling G, Sharp AH, Loev SJ et al (1995) Expression of the Huntington’s disease (IT15) protein product in HD patients. Hum Mol Genet 4:1365–1371

    Article  CAS  PubMed  Google Scholar 

  62. Schwab C, Arai T, Hasegawa M et al (2008) Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J Neuropathol Exp Neurol 67:1159–1165. https://doi.org/10.1097/NEN.0b013e31818e8951

    Article  PubMed  Google Scholar 

  63. Sieradzan KA, Mechan AO, Jones L et al (1999) Huntington’s disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein. Exp Neurol 156:92–99. https://doi.org/10.1006/exnr.1998.7005

    Article  CAS  PubMed  Google Scholar 

  64. Smith R, Klein P, Koc-Schmitz Y et al (2007) Loss of SNAP-25 and rabphilin 3a in sensory-motor cortex in Huntington’s disease. J Neurochem 103:115–123. https://doi.org/10.1111/j.1471-4159.2007.04703.x

    CAS  PubMed  Google Scholar 

  65. Spires-Jones TL, Attems J, Thal DR (2017) Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol 134:187–205. https://doi.org/10.1007/s00401-017-1709-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tabrizi SJ, Langbehn DR, Leavitt BR et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8:791–801. https://doi.org/10.1016/S1474-4422(09)70170-X

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tada M, Coon EA, Osmand AP et al (2012) Coexistence of Huntington’s disease and amyotrophic lateral sclerosis: a clinicopathologic study. Acta Neuropathol 124:749–760. https://doi.org/10.1007/s00401-012-1005-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Takeuchi R, Tada M, Shiga A et al (2016) Heterogeneity of cerebral TDP-43 pathology in sporadic amyotrophic lateral sclerosis: evidence for clinico-pathologic subtypes. Acta Neuropathol Commun 4:61. https://doi.org/10.1186/s40478-016-0335-2

    Article  PubMed  PubMed Central  Google Scholar 

  69. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  70. Tomas-Zapico C, Díez-Zaera M, Ferrer I et al (2012) α-Synuclein accumulates in huntingtin inclusions but forms independent filaments and its deficiency attenuates early phenotype in a mouse model of Huntington’s disease. Hum Mol Genet 21:495–510. https://doi.org/10.1093/hmg/ddr507

    Article  CAS  PubMed  Google Scholar 

  71. Tremblay C, François A, Delay C et al (2017) Association of neuropathological markers in the parietal cortex with antemortem cognitive function in persons with mild cognitive impairment and Alzheimer disease. J Neuropathol Exp Neurol. https://doi.org/10.1093/jnen/nlw109

    PubMed  Google Scholar 

  72. Tremblay C, St-Amour I, Schneider J et al (2011) Accumulation of transactive response DNA binding protein 43 in mild cognitive impairment and Alzheimer disease. J Neuropathol Exp Neurol 70:788–798. https://doi.org/10.1097/NEN.0b013e31822c62cf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tse C, Brault D, Gligorov J et al (2005) Evaluation of the quantitative analytical methods real-time PCR for HER-2 gene quantification and ELISA of serum HER-2 protein and comparison with fluorescence in situ hybridization and immunohistochemistry for determining HER-2 status in breast cancer patients. Clin Chem 51:1093–1101. https://doi.org/10.1373/clinchem.2004.044305

    Article  CAS  PubMed  Google Scholar 

  74. Uchino A, Takao M, Hatsuta H et al (2015) Incidence and extent of TDP-43 accumulation in aging human brain. Acta Neuropathol Commun 3:35. https://doi.org/10.1186/s40478-015-0215-1

    Article  PubMed  PubMed Central  Google Scholar 

  75. Vuono R, Winder-Rhodes S, de Silva R et al (2015) The role of tau in the pathological process and clinical expression of Huntington’s disease. Brain 138:1907–1918. https://doi.org/10.1093/brain/awv107

    Article  PubMed  PubMed Central  Google Scholar 

  76. Waldvogel HJ, Thu D, Hogg V et al (2012) Selective neurodegeneration, neuropathology and symptom profiles in Huntington’s disease. Adv Exp Med Biol 769:141–152

    Article  CAS  PubMed  Google Scholar 

  77. Xuereb JH, MacMillan JC, Snell R et al (1996) Neuropathological diagnosis and CAG repeat expansion in Huntington’s disease. J Neurol Neurosurg Psychiatry 60:78–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yin X, Jin N, Gu J et al (2012) Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) modulates serine/arginine-rich protein 55 (SRp55)-promoted Tau exon 10 inclusion. J Biol Chem 287:30497–30506. https://doi.org/10.1074/jbc.M112.355412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institute of Health Research (CIHR, Grant # 272311) to S.S.H., and Fonds de Recherche du Québec en Santé (FRQS) provided salary support to S.S.H. I.S-A. was supported by a CIHR-Huntington Society of Canada postdoctoral fellowship and A.T. received a FRQS scholarship. Special thanks to Sergio Ewane Ebouele of the Statistical Consulting Service at the Université Laval for his advice. We are thankful to Dr. Peter Davies (Feinstein Institute for Medical Research, NY, USA) for the generous gift of anti-tau antibodies. The Harvard Brain Tissue Resource Center provided tissues and is supported in part by HHSN-271-2013-00030C. The authors are very grateful to all study participants and their families who have contributed to the NIH Neurobiobank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien S. Hébert.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

St-Amour, I., Turgeon, A., Goupil, C. et al. Co-occurrence of mixed proteinopathies in late-stage Huntington’s disease. Acta Neuropathol 135, 249–265 (2018). https://doi.org/10.1007/s00401-017-1786-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1786-7

Keywords

Navigation