Skip to main content
Log in

The Mediator of RNA polymerase II

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Mediator (TRAP/ARC/PC2) is a large (22–28 subunit) protein complex that binds RNA polymerase II and controls transcription from class II genes. The evolutionarily conserved core of Mediator is found in all eukaryotes. It binds RNA polymerase II and is probably critical for basal transcription but it also mediates activation and repression of transcription. During evolution the complex has acquired additional species-specific subunits. These serve as an interface for regulatory factors and support specific signalling pathways. Recent mechanistic studies are consistent with the hypothesis that Mediator marks genes for binding by RNA polymerase II whereupon it subsequently activates the preinitiation complex. It is further likely that Mediator coordinates the recruitment of chromatin-modifying cofactor activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo ML, Kraus WL (2003) Mediator and p300/CBP-steroid receptor coactivator complexes have distinct roles, but function synergistically, during estrogen receptor alpha-dependent transcription with chromatin templates. Mol Cell Biol 23:335–348

    Google Scholar 

  • Akoulitchev S, Chuikov S, Reinberg D (2000) TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407:102–106

    Google Scholar 

  • Asada S, Choi Y, Yamada M, Wang SC, Hung MC, Qin J, Uesugi M (2002) External control of Her2 expression and cancer cell growth by targeting a Ras-linked coactivator. Proc Natl Acad Sci U S A 99:12747–12752

    Google Scholar 

  • Asturias FJ, Jiang YW, Myers LC, Gustafsson CM, Kornberg RD (1999) Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283:985–987

    Google Scholar 

  • Atkins GB, Hu X, Guenther MG, Rachez C, Freedman LP, Lazar MA (1999) Coactivators for the orphan nuclear receptor RORalpha. Mol Endocrinol 13:1550–1557

    Google Scholar 

  • Baek HJ, Malik S, Qin J, Roeder RG (2002) Requirement of TRAP/mediator for both activator-independent and activator-dependent transcription in conjunction with TFIID-associated TAF(II)s. Mol Cell Biol 22:2842–2852

    Google Scholar 

  • Berger SL, Cress WD, Cress A, Triezenberg SJ, Guarente L (1990) Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell 61:1199–1208

    Google Scholar 

  • Borggrefe T, Davis R, Erdjument-Bromage H, Tempst P, Kornberg RD (2002) A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. J Biol Chem 277:44202–44207

    Google Scholar 

  • Boube M, Faucher C, Joulia L, Cribbs DL, Bourbon HM (2000) Drosophila homologs of transcriptional mediator complex subunits are required for adult cell and segment identity specification. Genes Dev 14:2906–2917

    Google Scholar 

  • Boube M, Joulia L, Cribbs DL, Bourbon HM (2002) Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110:143–151

    Google Scholar 

  • Bourbon HM, Aguilera A, Ansari AZ, Asturias FJ, Berk AJ, Bjorklund S, Blackwell TK, Borggrefe T, Carey M, Carlson M, Conaway JW, Conaway RC, Emmons SW, Fondell JD, Freedman LP, Fukasawa T, Gustafsson CM, Han M, He X, Herman PK, Hinnebusch AG, Holmberg S, Holstege FC, Jaehning JA, Kim YJ, Kuras L, Leutz A, Lis JT, Meisterernest M, Naar AM, Nasmyth K, Parvin JD, Ptashne M, Reinberg D, Ronne H, Sadowski I, Sakurai H, Sipiczki M, Sternberg PW, Stillman DJ, Strich R, Struhl K, Svejstrup JQ, Tuck S, Winston F, Roeder RG, Kornberg RD (2004) A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell 14:553–557

    Google Scholar 

  • Bryant GO, Ptashne M (2003) Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell 11:1301–1309

    Google Scholar 

  • Burakov D, Wong CW, Rachez C, Cheskis BJ, Freedman LP (2000) Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex. J Biol Chem 275:20928–20934

    Google Scholar 

  • Carlson M, Osmond BC, Botstein D (1981) Mutants of yeast defective in sucrose utilization. Genetics 98:25–40

    Google Scholar 

  • Cosma MP, Panizza S, Nasmyth K (2001) Cdk1 triggers association of RNA polymerase to cell cycle promoters only after recruitment of the mediator by SBF. Mol Cell 7:1213–1220

    Google Scholar 

  • Davis JA, Takagi Y, Kornberg RD, Asturias FA (2002) Structure of the yeast RNA polymerase II holoenzyme: mediator conformation and polymerase interaction. Mol Cell 10:409–415

    Google Scholar 

  • Dotson MR, Yuan CX, Roeder RG, Myers LC, Gustafsson CM, Jiang YW, Li Y, Kornberg RD, Asturias FJ (2000) Structural organization of yeast and mammalian mediator complexes. Proc Natl Acad Sci U S A 97:14307–14310

    Google Scholar 

  • Drane P, Barel M, Balbo M, Frade R (1997) Identification of RB18A, a 205 kDa new p53 regulatory protein which shares antigenic and functional properties with p53. Oncogene 15:3013–3024

    Google Scholar 

  • Duret L, Gasteiger E, Perriere G (1996) LALNVIEW: a graphical viewer for pairwise sequence alignments. Comput Appl Biosci 12:507–510

    Google Scholar 

  • Dynlacht BD, Hoey T, Tjian R (1991) Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66:563–576

    Google Scholar 

  • Eberhardy SR, Farnham PJ (2002) Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J Biol Chem 277:40156–40162

    Google Scholar 

  • Flanagan PM, Kelleher RJ III, Sayre MH, Tschochner H, Kornberg RD (1991) A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350:436–438

    Google Scholar 

  • Fondell JD, Ge H, Roeder RG (1996) Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci U S A 93:8329–8333

    Google Scholar 

  • Frade R, Balbo M, Barel M (2000) RB18A, whose gene is localized on chromosome 17q12-q21.1, regulates in vivo p53 transactivating activity. Cancer Res 60:6585–6589

    Google Scholar 

  • Gadbois EL, Chao DM, Reese JC, Green MR, Young RA (1997) Functional antagonism between RNA polymerase II holoenzyme and global negative regulator NC2 in vivo. Proc Natl Acad Sci U S A 94:3145–3150

    Google Scholar 

  • Garrett-Engele CM, Siegal ML, Manoli DS, Williams BC, Li H, Baker BS (2002) intersex, a gene required for female sexual development in Drosophila, is expressed in both sexes and functions together with doublesex to regulate terminal differentiation. Development 129:4661–4675

    CAS  PubMed  Google Scholar 

  • Ge K, Guermah M, Yuan CX, Ito M, Wallberg AE, Spiegelman BM, Roeder RG (2002) Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature 417:563–567

    Google Scholar 

  • Gim BS, Park JM, Yoon JH, Kang C, Kim YJ (2001) Drosophila Med6 is required for elevated expression of a large but distinct set of developmentally regulated genes. Mol Cell Biol 21:5242–5255

    Google Scholar 

  • Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  CAS  PubMed  Google Scholar 

  • Goppelt A, Stelzer G, Lottspeich F, Meisterernst M (1996) A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains. EMBO J 15:3105–3116

    Google Scholar 

  • Gu JY, Park JM, Song EJ, Mizuguchi G, Yoon JH, Kim-Ha J, Lee KJ, Kim YJ (2002) Novel mediator proteins of the small mediator complex in Drosophila SL2 cells. J Biol Chem 277:27154–27161

    Google Scholar 

  • Guglielmi B, van Berkum NL, Klapholz B, Bijma T, Boube M, Boschiero C, Bourbon HM, Holstege FC, Werner M (2004) A high resolution protein interaction map of the yeast mediator complex. Nucleic Acids Res 32:5379–5391

    Google Scholar 

  • Gustafsson CM, Myers LC, Beve J, Spahr H, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD (1998) Identification of new mediator subunits in the RNA polymerase II holoenzyme from Saccharomyces cerevisiae. J Biol Chem 273:30851–30854

    Google Scholar 

  • Gwack Y, Baek HJ, Nakamura H, Lee SH, Meisterernst M, Roeder RG, Jung JU (2003) Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi’s sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol Cell Biol 23:2055–2067

    Google Scholar 

  • Hatzis P, Talianidis I (2002) Dynamics of enhancer–promoter communication during differentiation-induced gene activation. Mol Cell 10:1467–1477

    Google Scholar 

  • Hittelman AB, Burakov D, Iniguez-Lluhi JA, Freedman LP, Garabedian MJ (1999) Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. Embo J 18:5380–5388

    Google Scholar 

  • Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG (1999) Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol Cell 3:361–370

    Google Scholar 

  • Ito M, Yuan CX, Okano HJ, Darnell RB, Roeder RG (2000) Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol Cell 5:683–693

    Google Scholar 

  • Ito M, Okano HJ, Darnell RB, Roeder RG (2002) The TRAP100 component of the TRAP/Mediator complex is essential in broad transcriptional events and development. EMBO J 21:3464–3475

    Google Scholar 

  • Johnson KM, Carey M (2003) Assembly of a mediator/TFIID/TFIIA complex bypasses the need for an activator. Curr Biol 13:772–777

    Google Scholar 

  • Johnson KM, Wang J, Smallwood A, Arayata C, Carey M (2002) TFIID and human mediator coactivator complexes assemble cooperatively on promoter DNA. Genes Dev 16:1852–1863

    Google Scholar 

  • Kang JS, Kim SH, Hwang MS, Han SJ, Lee YC, Kim YJ (2001) The structural and functional organization of the yeast mediator complex. J Biol Chem 276:42003–42010

    Google Scholar 

  • Kang YK, Guermah M, Yuan CX, Roeder RG (2002) The TRAP/Mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro. Proc Natl Acad Sci U S A 99:2642–2647

    Google Scholar 

  • Kato Y, Habas R, Katsuyama Y, Naar AM, He X (2002) A component of the ARC/Mediator complex required for TGF beta/Nodal signalling. Nature 418:641–646

    Google Scholar 

  • Kelleher RJ III, Flanagan PM, Kornberg RD (1990) A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61:1209–1215

    Google Scholar 

  • Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608

    Google Scholar 

  • Kim TW, Kwon YJ, Kim JM, Song YH, Kim SN, Kim YJ (2004) MED16 and MED23 of Mediator are coactivators of lipopolysaccharide- and heat-shock-induced transcriptional activators. Proc Natl Acad Sci U S A 101:12153–12158

    Google Scholar 

  • Kretzschmar M, Stelzer G, Roeder RG, Meisterernst M (1994) RNA polymerase II cofactor PC2 facilitates activation of transcription by GAL4-AH in vitro. Mol Cell Biol 14:3927–3937

    Google Scholar 

  • Lau JF, Nusinzon I, Burakov D, Freedman LP, Horvath CM (2003) Role of metazoan mediator proteins in interferon-responsive transcription. Mol Cell Biol 23:620–628

    Google Scholar 

  • Lee TI, Wyrick JJ, Koh SS, Jennings EG, Gadbois EL, Young RA (1998) Interplay of positive and negative regulators in transcription initiation by RNA polymerase II holoenzyme. Mol Cell Biol 18:4455–4462

    Google Scholar 

  • Lemaire M, Xie J, Meisterernst M, Collart MA (2000) The NC2 repressor is dispensable in yeast mutated for the Sin4p component of the holoenzyme and plays roles similar to Mot1p in vivo. Mol Microbiol 36:163–173

    Google Scholar 

  • Lemieux K, Gaudreau L (2004) Targeting of Swi/Snf to the yeast GAL1 UAS(G) requires the mediator, TAF(II)s, and RNA polymerase II. EMBO J 23:4040–4050

    Google Scholar 

  • Liu Y, Ranish JA, Aebersold R, Hahn S (2001) Yeast nuclear extract contains two major forms of RNA polymerase II mediator complexes. J Biol Chem 276:7169–7175

    Google Scholar 

  • Lue NF, Kornberg RD (1987) Accurate initiation at RNA polymerase II promoters in extracts from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 84:8839–8843

    Google Scholar 

  • Malik S, Roeder RG (2000) Transcriptional regulation through mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci 25:277–283

    Google Scholar 

  • Malik S, Gu W, Wu W, Qin J, Roeder RG (2000) The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol Cell 5:753–760

    Google Scholar 

  • Malik S, Wallberg AE, Kang YK, Roeder RG (2002) TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol 22:5626–5637

    Google Scholar 

  • Matsui T, Segall J, Weil PA, Roeder RG (1980) Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J Biol Chem 255:11992–11996

    Google Scholar 

  • Meisterernst M (2002) Transcription. Mediator meets morpheus. Science 295:984–985

    Google Scholar 

  • Meisterernst M, Roy AL, Lieu HM, Roeder RG (1991) Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66:981–993

    Google Scholar 

  • Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M, Gannon F (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115:751–763

    Google Scholar 

  • Mittler G, Kremmer E, Timmers HT, Meisterernst M (2001) Novel critical role of a human mediator complex for basal RNA polymerase II transcription. EMBO Rep 2:808–213

    Google Scholar 

  • Mittler G, Stuhler T, Santolin L, Uhlmann T, Kremmer E, Lottspeich F, Berti L, Meisterernst M (2003) A novel docking site on mediator is critical for activation by VP16 in mammalian cells. EMBO J 22:6494–6504

    Google Scholar 

  • Mo X, Kowenz-Leutz E, Xu H, Leutz A (2004) Ras induces mediator complex exchange on C/EBP beta. Mol Cell 13:241–250

    Google Scholar 

  • Myers LC, Kornberg RD (2000) Mediator of transcriptional regulation. Annu Rev Biochem 69:729–749

    Google Scholar 

  • Myers LC, Gustafsson CM, Bushnell DA, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD (1998) The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev 12:45–54

    Google Scholar 

  • Naar AM, Beaurang PA, Robinson KM, Oliner JD, Avizonis D, Scheek S, Zwicker J, Kadonaga JT, Tjian R (1998a) Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev 12:3020–3031

    Google Scholar 

  • Naar AM, Ryu S, Tjian R (1998b) Cofactor requirements for transcriptional activation by Sp1. Cold Spring Harbor Symp Quant Biol 63:189–199

    Google Scholar 

  • Naar AM, Lemon BD, Tjian R (2001) Transcriptional coactivator complexes. Annu Rev Biochem 70:475–501

    Google Scholar 

  • Naar AM, Taatjes DJ, Zhai W, Nogales E, Tjian R (2002) Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev 16:1339–1344

    Google Scholar 

  • Neigeborn L, Carlson M (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858

    Google Scholar 

  • Nevado J, Tenbaum SP, Aranda A (2004) hSrb7, an essential human Mediator component, acts as a coactivator for the thyroid hormone receptor. Mol Cell Endocrinol 222:41–51

    Google Scholar 

  • Nonet ML, Young RA (1989) Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123:715–724

    Google Scholar 

  • Orphanides G, Lagrange T, Reinberg D (1996) The general transcription factors of RNA polymerase II. Genes Dev 10:2657–2683

    Google Scholar 

  • Park JM, Gim BS, Kim JM, Yoon JH, Kim HS, Kang JG, Kim YJ (2001a) Drosophila mediator complex is broadly utilized by diverse gene-specific transcription factors at different types of core promoters. Mol Cell Biol 21:2312–2323

    Google Scholar 

  • Park JM, Werner J, Kim JM, Lis JT, Kim YJ (2001b) Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol Cell 8:9–19

    Google Scholar 

  • Park JM, Kim JM, Kim LK, Kim SN, Kim-Ha J, Kim JH, Kim YJ (2003) Signal-induced transcriptional activation by Dif requires the dTRAP80 mediator module. Mol Cell Biol 23:1358–1367

    Google Scholar 

  • Pineda Torra I, Freedman LP, Garabedian MJ (2004) Identification of DRIP205 as a coactivator for the Farnesoid X receptor. J Biol Chem 279:36184–36191

    Google Scholar 

  • Pugh BF, Tjian R (1990) Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61:1187–1197

    Article  Google Scholar 

  • Qiu H, Hu C, Yoon S, Natarajan K, Swanson MJ, Hinnebusch AG (2004) An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p. Mol Cell Biol 24:4104–4117

    Google Scholar 

  • Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, Naar AM, Erdjument-Bromage H, Tempst P, Freedman LP (1999) Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398:824–828

    Google Scholar 

  • Rachez C, Freedman LP (2001) Mediator complexes and transcription. Curr Opin Cell Biol 13:274–280

    Google Scholar 

  • Rani PG, Ranish JA, Hahn S (2004) RNA polymerase II (Pol II)-TFIIF and Pol II-mediator complexes: the major stable Pol II complexes and their activity in transcription initiation and reinitiation. Mol Cell Biol 24:1709–1720

    Google Scholar 

  • Ranish JA, Yudkovsky N, Hahn S (1999) Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev 13:49–63

    Google Scholar 

  • Sakurai H, Fukasawa T (2000) Functional connections between mediator components and general transcription factors of Saccharomyces cerevisiae. J Biol Chem 275:37251–37256

    Google Scholar 

  • Sato S, Tomomori-Sato C, Banks CA, Parmely TJ, Sorokina I, Brower CS, Conaway RC, Conaway JW (2003a) A mammalian homolog of Drosophila melanogaster transcriptional coactivator intersex is a subunit of the mammalian mediator complex. J Biol Chem 278:49671–49674

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Tomomori-Sato C, Banks CA, Sorokina I, Parmely TJ, Kong SE, Jin J, Cai Y, Lane WS, Brower CS, Conaway RC, Conaway JW (2003b) Identification of mammalian mediator subunits with similarities to yeast mediator subunits Srb5, Srb6, Med11, and Rox3. J Biol Chem 278:15123–15127

    Google Scholar 

  • Sato S, Tomomori-Sato C, Parmely TJ, Florens L, Zybailov B, Swanson SK, Banks CA, Jin J, Cai Y, Washburn MP, Conaway JW, Conaway RC (2004) A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell 14:685–691

    Google Scholar 

  • Shao W, Rosenauer A, Mann K, Chang CP, Rachez C, Freedman LP, Miller WH Jr (2000) Ligand-inducible interaction of the DRIP/TRAP coactivator complex with retinoid receptors in retinoic acid-sensitive and -resistant acute promyelocytic leukemia cells. Blood 96:2233–2239

    Google Scholar 

  • Shimogawa H, Kwon Y, Mao Q, Kawazoe Y, Choi Y, Asada S, Kigoshi H, Uesugi M (2004) A wrench-shaped synthetic molecule that modulates a transcription factor-coactivator interaction. J Am Chem Soc 126:3461–3471

    Google Scholar 

  • Simchen G, Winston F, Styles CA, Fink GR (1984) Ty-mediated gene expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc Natl Acad Sci U S A 81:2431–2434

    Google Scholar 

  • Spahr H, Khorosjutina O, Baraznenok V, Linder T, Samuelsen CO, Hermand D, Makela TP, Holmberg S, Gustafsson CM (2003) Mediator influences Schizosaccharomyces pombe RNA polymerase II-dependent transcription in vitro. J Biol Chem 278:51301–51306

    Google Scholar 

  • Stern M, Jensen R, Herskowitz I (1984) Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178:853–868

    Google Scholar 

  • Stevens JL, Cantin GT, Wang G, Shevchenko A, Berk AJ (2002) Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296:755–758

    Google Scholar 

  • Sun X, Zhang Y, Cho H, Rickert P, Lees E, Lane W, Reinberg D (1998) NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol Cell 2:213–222

    Google Scholar 

  • Suzuki Y, Nogi Y, Abe A, Fukasawa T (1988) GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol Cell Biol 8:4991–4999

    Google Scholar 

  • Taatjes DJ, Naar AM, Andel F IIIs, Nogales E, Tjian R (2002) Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295:1058–1062

    Google Scholar 

  • Taatjes DJ, Marr MT, Tjian R (2004a) Regulatory diversity among metazoan co-activator complexes. Nat Rev Mol Cell Biol 5:403–410

    Google Scholar 

  • Taatjes DJ, Schneider-Poetsch T, Tjian R (2004b) Distinct conformational states of nuclear receptor-bound CRSP-Med complexes. Nat Struct Mol Biol 11:664–671

    Google Scholar 

  • Thompson CM, Koleske AJ, Chao DM, Young RA (1993) A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73:1361–1375

    Google Scholar 

  • Toth JI, Datta S, Athanikar JN, Freedman LP, Osborne TF (2004) Selective coactivator interactions in gene activation by SREBP-1a and -1c. Mol Cell Biol 24:8288–8300

    Google Scholar 

  • Wada O, Oishi H, Takada I, Yanagisawa J, Yano T, Kato S (2004) BRCA1 function mediates a TRAP/DRIP complex through direct interaction with TRAP220. Oncogene 23:6000–6005

    Google Scholar 

  • Wang G, Berk AJ (2002) In vivo association of adenovirus large E1A protein with the human mediator complex in adenovirus-infected and -transformed cells. J Virol 76:9186–9193

    Google Scholar 

  • Wang Q, Sharma D, Ren Y, Fondell JD (2002) A coregulatory role for the TRAP-mediator complex in androgen receptor-mediated gene expression. J Biol Chem 277:42852–42858

    Google Scholar 

  • Wang S, Ge K, Roeder RG, Hankinson O (2004) Role of mediator in transcriptional activation by the aryl hydrocarbon receptor. J Biol Chem 279:13593–13600

    Google Scholar 

  • Warnmark A, Almlof T, Leers J, Gustafsson JA, Treuter E (2001) Differential recruitment of the mammalian mediator subunit TRAP220 by estrogen receptors ERalpha and ERbeta. J Biol Chem 276:23397–23404

    Google Scholar 

  • Weil PA, Luse DS, Segall J, Roeder RG (1979) Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18:469–484

    Google Scholar 

  • Werner F, Weinzierl RO (2002) A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol Cell 10:635–646

    Google Scholar 

  • Wu SY, Zhou T, Chiang CM (2003) Human mediator enhances activator-facilitated recruitment of RNA polymerase II and promoter recognition by TATA-binding protein (TBP) independently of TBP-associated factors. Mol Cell Biol 23:6229–6242

    Google Scholar 

  • Xie J, Collart M, Lemaire M, Stelzer G, Meisterernst M (2000) A single point mutation in TFIIA suppresses NC2 requirement in vivo. EMBO J 19:672–682

    Google Scholar 

  • Yang F, DeBeaumont R, Zhou S, Naar AM (2004) The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc Natl Acad Sci U S A 101:2339–2344

    Google Scholar 

  • Yoon S, Qiu H, Swanson MJ, Hinnebusch AG (2003) Recruitment of SWI/SNF by Gcn4p does not require Snf2p or Gcn5p but depends strongly on SWI/SNF integrity, SRB mediator, and SAGA. Mol Cell Biol 23:8829–8845

    Google Scholar 

  • Yuan CX, Ito M, Fondell JD, Fu ZY, Roeder RG (1998) The TRAP220 component of a thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc Natl Acad Sci U S A 95:7939–7944

    Google Scholar 

  • Yudkovsky N, Ranish JA, Hahn S (2000) A transcription reinitiation intermediate that is stabilized by activator. Nature 408:225–229

    Google Scholar 

  • Zhou R, Bonneaud N, Yuan CX, de Santa Barbara P, Boizet B, Schomber T, Scherer G, Roeder RG, Poulat F, Berta P, Tibor S (2002) SOX9 interacts with a component of the human thyroid hormone receptor-associated protein complex. Nucleic Acids Res 30:3245–3252

    Google Scholar 

  • Zhu Y, Qi C, Jain S, Le Beau MM, Espinosa R, 3rd, Atkins GB, Lazar MA, Yeldandi AV, Rao MS, Reddy JK (1999) Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc Natl Acad Sci U S A 96:10848–10853

    Google Scholar 

  • Zhu Y, Qi C, Jain S, Rao MS, Reddy JK (1997) Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem 272:25500–25506

    Google Scholar 

Download references

Acknowledgements

We are grateful to Sally Rushton for critical reading of the manuscript. This work was supported by grants from the DFG, the TMR research training program of the EC (HPRN-CT-2002-00261) and the BMBF proteomics platform technology program (031U101F and 0313030A) to M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Meisterernst.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blazek, E., Mittler, G. & Meisterernst, M. The Mediator of RNA polymerase II. Chromosoma 113, 399–408 (2005). https://doi.org/10.1007/s00412-005-0329-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0329-5

Keywords

Navigation