Skip to main content
Log in

From early homologue recognition to synaptonemal complex formation

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

This review focuses on various aspects of chromosome homology searching and their relationship to meiotic and vegetative pairing and to the silencing of unpaired copies of genes. Chromosome recognition and pairing is a prominent characteristic of meiosis; however, for some organisms, this association (complete or partial) is also a normal part of nuclear organization. The multiple mechanisms suggested to contribute to homologous pairing are analyzed. Recognition of DNA/DNA homology also plays an important role in detecting DNA segments that are present in inappropriate number of copies before and during meiosis. In this context, the mechanisms of methylation induced premeiotically, repeat-induced point mutation, meiotic silencing by unpaired DNA, and meiotic sex chromosome inactivation will be discussed. Homologue juxtaposition during meiotic prophase can be divided into three mechanistically distinct steps, namely, recognition, presynaptic alignment, and synapsis by the synaptonemal complex (SC). In most organisms, these three steps are distinguished by their dependence on DNA double-strand breaks (DSBs). The coupling of SC initiation to (and downstream effects of) DSB formation and the exceptions to this dependency are discussed. Finally, this review addresses the specific factors that appear to promote chromosome movement at various stages of meiotic prophase, most particularly at the bouquet stage, and on their significance for homologue pairing and/or achieving a final pachytene configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal S, Roeder GS (2000) Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102:245–255

    PubMed  CAS  Google Scholar 

  • Albini SM, Jones GH (1987) Synaptonemal complex spreading in Allium cepa and A. fistulosum. I. The initiation and sequence of pairing. Chromosoma 95:324–338

    Google Scholar 

  • Anderson LK, Stack SM (2005) Recombination nodules in plants. Cytogenet Genome Res 109:198–204

    PubMed  CAS  Google Scholar 

  • Aragon-Alcaide L, Reader S, Miller T, Moore G (1997) Centromeric behaviour in wheat with high and low homeologous chromosomal pairing. Chromosoma 106:327–333

    PubMed  CAS  Google Scholar 

  • Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137:5–18

    PubMed  CAS  Google Scholar 

  • Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998

    PubMed  CAS  Google Scholar 

  • Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68

    PubMed  CAS  Google Scholar 

  • Bhuiyan H, Schmekel K (2004) Meiotic chromosome synapsis in yeast can occur without spo11-induced DNA double-strand breaks. Genetics 168:775–783

    PubMed  CAS  Google Scholar 

  • Bishop DK (1994) RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79:1081–1092

    PubMed  CAS  Google Scholar 

  • Blat U, Protacio RU, Hunter N, Kleckner N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111:1–12

    Google Scholar 

  • Bojko M (1983) Human meiosis. VIII. Chromosome pairing and formation of the synaptonemal complex in oocytes. Carlsberg Res Commun 48:457–483

    Google Scholar 

  • Bojko M (1988) Presence of abnormal synaptonemal complexes in heterothallic species of Neurospora. Genome 30:697–709

    PubMed  CAS  Google Scholar 

  • Bojko M (1989) Two kinds of “recombination nodules” in Neurospora crassa. Genome 32:309–317

    PubMed  CAS  Google Scholar 

  • Börner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45

    PubMed  Google Scholar 

  • Bouhouche K, Zickler D, Debuchy R, Arnaise S (2004) Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 167:151–159

    PubMed  CAS  Google Scholar 

  • Brown WV, Stack SM (1968) Somatic pairing as a regular preliminary to meiosis. Bull Torrey Bot Club 95:369–378

    Google Scholar 

  • Burgess SM, Kleckner N (1999) Collisions between yeast chromosomal loci in vivo are governed by three layers of organization. Genes Dev 13:1871–1883

    PubMed  CAS  Google Scholar 

  • Burgess SM, Kleckner N, Weiner BM (1999) Somatic pairing of homologs in budding yeast: existence and modulation. Genes Dev 13:1627–1641

    PubMed  CAS  Google Scholar 

  • Bystricky K, Laroche T, van Houwe G, Blaszczyk M, Gasser SM (2005) Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J Cell Biol 168:375–387

    PubMed  CAS  Google Scholar 

  • Carlton PM, Cowan CR, Cande WZ (2003) Directed motion of telomeres in the formation of the meiotic bouquet revealed by time course and simulation analysis. Mol Biol Cell 14:2832–2843

    PubMed  CAS  Google Scholar 

  • Carpenter ATC (1988) Thoughts on recombination nodules, meiotic recombination and chiasmata. In: Kucherlapati R, Smith GR (eds) Genetic recombination. American Society of Microbiology, Washington, DC, pp 549–574

    Google Scholar 

  • Celerin M, Merino ST, Stone JE, Menzie AM, Zolan ME (2000) Multiple roles of Spo11 in meiotic chromosome behavior. EMBO J 19:2739–2750

    PubMed  CAS  Google Scholar 

  • Cha RS, Weiner BM, Keeney S, Dekker J, Kleckner N (2000) Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes Dev 14:493–503

    PubMed  CAS  Google Scholar 

  • Chikashige Y, Ding DQ, Funabiki H, Haraguchi T, Mashiko S, Yanagida M, Hiraoka Y (1994) Telomere-led premeiotic chromosome movement in fission yeast. Science 264:270–273

    PubMed  CAS  Google Scholar 

  • Chikashige Y, Ding DQ, Imai Y, Yamamoto M, Haraguchi T, Hiraoka Y (1997) Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe. EMBO J 16:193–202

    PubMed  CAS  Google Scholar 

  • Colaiacovo MP, MacQueen AJ, Martinez-Perez E, McDonald K, Adamo A, La Volpe A, Villeneuve AM (2003) Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev Cell 5:463–474

    PubMed  CAS  Google Scholar 

  • Colot V, Maloisel L, Rossignol JL (1996) Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell 86:855–864

    PubMed  CAS  Google Scholar 

  • Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385:744–747

    PubMed  CAS  Google Scholar 

  • Cooper JP, Watanabe Y, Nurse P (1998) Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392:828–831

    PubMed  CAS  Google Scholar 

  • Couteau F, Nabeshima K, Villeneuve A, Zetka M (2004) A component of C. elegans meiotic chromosome axes at the interface of homolog alignment, synapsis, nuclear reorganization, and recombination. Curr Biol 14:585–592

    PubMed  CAS  Google Scholar 

  • Cowan CR, Cande WZ (2002) Meiotic telomere clustering is inhibited by colchicine but does not require cytoplasmic microtubules. J Cell Sci 115:3747–3756

    PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–302

    PubMed  CAS  Google Scholar 

  • Csink AK, Henikoff S (1998) Large-scale chromosomal movements during interphase progression in Drosophila. J Cell Biol 143:13–22

    PubMed  CAS  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    PubMed  CAS  Google Scholar 

  • de los Santos T, Hunter N, Lee C, Larkin B, Loidl J, Hollingsworth NM (2003) The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164:81–94

    PubMed  Google Scholar 

  • Dernburg AF, Sedat JW, Hawley RS (1996) Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86:135–146

    PubMed  CAS  Google Scholar 

  • Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:387–398

    PubMed  CAS  Google Scholar 

  • de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastink A (2005) Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 19:1376–1389

    PubMed  Google Scholar 

  • Diaz RL, Alcid AD, Berger JM, Keeney S (2002) Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Mol Cell Biol 22:1106–1115

    PubMed  CAS  Google Scholar 

  • Ding DQ, Chikashige Y, Haraguchi T, Hiraoka Y (1998) Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J Cell Sci 111:701–712

    PubMed  CAS  Google Scholar 

  • Ding DQ, Yamamoto A, Haraguchi T, Hiraoka Y (2004) Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 6:329–341

    PubMed  CAS  Google Scholar 

  • Faugeron G, Rhounim L, Rossignol JL (1990) How does the cell count the number of ectopic copies of a gene in the premeiotic inactivation process acting in Ascobolus immersus? Genetics 124:585–591

    PubMed  CAS  Google Scholar 

  • Fawcett DW (1956) The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes. J Biophys Biochem Cytol 2:403–406

    PubMed  CAS  Google Scholar 

  • Franklin AE, McElver J, Sunjevaric I, Rothstein R, Bowen B, Cande WZ (1999) Three-dimensional microscopy of the rad51 recombination protein during meiotic prophase. Plant Cell 11:809–824

    PubMed  CAS  Google Scholar 

  • Fransz P, de Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well-defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci U S A 99:14584–14589

    PubMed  CAS  Google Scholar 

  • Freitag M, Williams RL, Kothe GO, Selker EU (2002) A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc Natl Acad Sci U S A 99:8802–8807

    PubMed  CAS  Google Scholar 

  • Fuchs J, Lorenz A, Loidl J (2002) Chromosome associations in budding yeast caused by integrated tandemly repeated transgenes. J Cell Sci 115:1213–1220

    PubMed  CAS  Google Scholar 

  • Fung JC, Marshall WF, Dernburg A, Agard DA, Sedat JW (1998) Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J Cell Biol 141:5–20

    PubMed  CAS  Google Scholar 

  • Fung JC, Rockmill B, Odell M, Roeder GS (2004) Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116:795–802

    PubMed  CAS  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423

    PubMed  CAS  Google Scholar 

  • Gemkow MJ, Verveer PJ, Arndt-Jovin DJ (1998) Homologous association of the Bithorax complex during embryogenesis: consequences for transvection in Drosophila melanogaster. Development 125:4541–4552

    PubMed  CAS  Google Scholar 

  • Goldman ASH, Lichten M (1996) The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144:43–55

    PubMed  CAS  Google Scholar 

  • Golubovskaya IN, Harper LC, Pawlowski WP, Schichnes D, Cande WZ (2002) The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). Genetics 162:1979–1993

    PubMed  CAS  Google Scholar 

  • Gong WJ, McKim KS, Hawley RS (2005) All paired up with no place to go: pairing, synapsis, and DSB formation in a balancer heterozygote. PLoS Genet 18:e67

    Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600

    PubMed  CAS  Google Scholar 

  • Guillon H, Baudat F, Grey C, Liskay RM, de Massy B (2005) Crossover and noncrossover pathways in mouse meiosis. Mol Cell 20:563–573

    PubMed  CAS  Google Scholar 

  • Haber JE (1998) Meiosis: searching for a partner. Science 279:823–824

    PubMed  CAS  Google Scholar 

  • Hawley RS (1980) Chromosomal sites necessary for normal levels of meiotic recombination in Drosophila melanogaster. I. Evidence for and mapping of the sites. Genetics 94:625–646

    PubMed  CAS  Google Scholar 

  • Hawley RS, Irick H, Zitron AE, Haddox DA, Lohe A, New C, Whitley MD, Arbel T, Jang J, McKim K et al (1992) There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet 13:440–467

    PubMed  CAS  Google Scholar 

  • Henderson KA, Keeney S (2004) Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc Natl Acad Sci U S A 101:4519–4524

    PubMed  CAS  Google Scholar 

  • Henderson KA, Keeney S (2005) Synaptonemal complex formation: where does it start? Bioessays 27:995–998

    PubMed  CAS  Google Scholar 

  • Henikoff S (1997) Nuclear organization and gene expression: homologous pairing and long-range interactions. Curr Opin Cell Biol 9:388–395

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Smith JB, Bennett MD (1988) The absence of somatic association of centromeres of homologous chromosomes in grass mitotic metaphases. Chromosoma 96:119–131

    Google Scholar 

  • Higgins JD, Armstrong SJ, Franklin FC, Jones GH (2004) The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev 18:2557–2570

    PubMed  CAS  Google Scholar 

  • Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500

    PubMed  CAS  Google Scholar 

  • Hillers KJ, Villeneuve AM (2003) Chromosome-wide control of meiotic crossing over in C. elegans. Curr Biol 13:1641–1647

    PubMed  CAS  Google Scholar 

  • Holm PB, Rasmussen SW, Zickler D, Lu BC, Sage J (1981) Chromosome pairing, recombination nodules and chiasma formation in the basidiomycete Coprinus cinereus. Carlsberg Res Commun 46:305–346

    Google Scholar 

  • Hochwagen A, Wrobel G, Cartron M, Demougin P, Niederhauser-Wiederkehr C, Boselli MG, Primig M, Amon A (2005) Novel response to microtubule perturbation in meiosis. Mol Cell Biol 25:4767–4781

    PubMed  CAS  Google Scholar 

  • Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106:59–70

    PubMed  CAS  Google Scholar 

  • Jang JK, Sherizen DE, Bhagat R, Manheim EA, McKim KS (2003) Relationship of DNA double-strand breaks to synapsis in Drosophila. J Cell Sci 116:3069–3077

    PubMed  CAS  Google Scholar 

  • Jin Q, Trelles-Sticken E, Scherthan H, Loidl J (1998) Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J Cell Biol 141:21–29

    PubMed  CAS  Google Scholar 

  • Jorgensen R (1990) Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol 8:340–344

    PubMed  CAS  Google Scholar 

  • Joseph I, Jia D, Lustig AJ (2005) Ndj1p-dependent epigenetic resetting of telomere size in yeast meiosis. Curr Biol 15:231–237

    PubMed  CAS  Google Scholar 

  • Kato N, Lam E (2003) Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J Cell Sci 116:2195–2201

    PubMed  CAS  Google Scholar 

  • Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    PubMed  CAS  Google Scholar 

  • Keeney S, Kleckner N (1996) Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes Cells 1:475–489

    PubMed  CAS  Google Scholar 

  • Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    PubMed  CAS  Google Scholar 

  • Kleckner N, Weiner BM (1993) Potential advantages of unstable interactions for pairing of chromosomes in meiotic, somatic, and premeiotic cells. Cold Spring Harb Symp Quant Biol 58:553–565

    PubMed  CAS  Google Scholar 

  • Kleckner N, Zickler D, Jones GH, Dekker J, Padmore R, Henle J, Hutchinson J (2004) A mechanical basis for chromosome function. Proc Natl Acad Sci U S A 101:12592–12597

    PubMed  CAS  Google Scholar 

  • Kutil BL, Seong KY, Aramayo R (2003) Unpaired genes do not silence their paired neighbors. Curr Genet 43:425–432

    PubMed  CAS  Google Scholar 

  • Lee DW, Pratt RJ, McLaughlin M, Aramayo R (2003) An argonaute-like protein is required for meiotic silencing. Genetics 164:821–828

    PubMed  CAS  Google Scholar 

  • Li L, Gerecke EE, Zolan ME (1999) Homolog pairing and meiotic progression in Coprinus cinereus. Chromosoma 108:384–392

    PubMed  CAS  Google Scholar 

  • Liebe B, Alsheimer M, Hoog C, Benavente R, Scherthan H (2004) Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol Biol Cell 15:827–837

    PubMed  CAS  Google Scholar 

  • Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL (2004) Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci U S A 101:6496–6501

    PubMed  CAS  Google Scholar 

  • Loidl J (1990) The initiation of meiotic chromosome pairing: the cytological view. Genome 33:759–778

    PubMed  CAS  Google Scholar 

  • Loidl J, Klein F, Scherthan H (1994) Homologous pairing is reduced but not abolished in asynaptic mutants of yeast. J Cell Biol 125:1191–1200

    PubMed  CAS  Google Scholar 

  • Lorenz A, Fuchs J, Burger R, Loidl J (2003) Chromosome pairing does not contribute to nuclear architecture in vegetative yeast cells. Eukaryot Cell 2:856–866

    PubMed  CAS  Google Scholar 

  • Lu BC (1993) Spreading the synaptonemal complex of Neurospora crassa. Chromosoma 102:464–472

    PubMed  CAS  Google Scholar 

  • Lu BC, Raju NB (1970) Meiosis in Coprinus. II. Chromosome pairing and the lampbrush diplotene stage of meiotic prophase. Chromosoma 29:305–316

    PubMed  CAS  Google Scholar 

  • Lysak MA, Pecinka A, Schubert I (2003) Recent progress in chromosome painting of Arabidopsis and related species. Chromosome Res 11:195–204

    PubMed  CAS  Google Scholar 

  • MacQueen AJ, Villeneuve AM (2001) Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev 15:1674–1687

    PubMed  CAS  Google Scholar 

  • MacQueen AJ, Colaiacovo MP, McDonald K, Villeneuve AM (2002) Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev 18:2428–2442

    Google Scholar 

  • MacQueen AJ, Phillips CM, Bhalla N, Weiser P, Villeneuve AM, Dernburg AF (2005) Chromosome sites play dual roles to establish homologous synapsis during meiosis in C. elegans. Cell 123:1037–1050

    PubMed  CAS  Google Scholar 

  • Maguire MP (1984) The mechanism of meiotic homologue pairing. J Theor Biol 106:605–615

    PubMed  CAS  Google Scholar 

  • Maguire MP, Riess RW (1994) The relationship of homologous synapsis and crossing over in a maize inversion. Genetics 137:281–288

    PubMed  CAS  Google Scholar 

  • Malagnac F, Wendel B, Goyon C, Faugeron G, Zickler D, Rossignol JL, Noyer-Weidner M, Vollmayr P, Trautner TA, Walter J (1997) A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91:281–290

    PubMed  CAS  Google Scholar 

  • Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7:825–842

    PubMed  CAS  Google Scholar 

  • Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, Belmont A, Murray AW, Agard DA, Sedat JW (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7:930–939

    PubMed  CAS  Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Villeneuve AM (2005) HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis. Genes Dev 19:2727–2743

    PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Shaw P, Reader S, Aragon-Alcaide L, Miller T, Moore G (1999) Homologous chromosome pairing in wheat. J Cell Sci 112:1761–1769

    PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Shaw PJ, Moore G (2000) Polyploidy induces centromere association. J Cell Biol 148:233–238

    PubMed  CAS  Google Scholar 

  • Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    PubMed  CAS  Google Scholar 

  • McClintock B (1933) The association of non-homologous parts of chromosomes in the mid-prophase of meiosis in Zea mays. Z Zellforsch Microsk Anat 19:191–237

    Google Scholar 

  • McKee BD (1996) The license to pair: identification of meiotic pairing sites in Drosophila. Chromosoma 105:135–141

    PubMed  CAS  Google Scholar 

  • McKee BD (1998) Pairing sites and the role of chromosome pairing in meiosis and spermatogenesis in male Drosophila. Curr Top Dev Biol 37:77–115

    Article  PubMed  CAS  Google Scholar 

  • McKee BD (2004) Homologous pairing and chromosome dynamics in meiosis and mitosis. Biochim Biophys Acta 1677:165–180

    PubMed  CAS  Google Scholar 

  • McKee BD, Habera L, Vrana JA (1992) Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X–Y pairing sites in male meiosis, and a general model for achiasmatic pairing. Genetics 132:529–544

    PubMed  CAS  Google Scholar 

  • McKee BD, Lumsden SE, Das S (1993) The distribution of male meiotic pairing sites on chromosome 2 of Drosophila melanogaster: meiotic pairing and segregation of 2-Y transpositions. Chromosoma 102:180–194

    PubMed  CAS  Google Scholar 

  • McKim KS, Green Marroquin BL, Sekelsky JJ, Chin G, Steinberg C, Khodosh R, Hawley RS (1998) Meiotic synapsis in the absence of recombination. Science 279:876–878

    PubMed  CAS  Google Scholar 

  • Merino ST, Cummings WJ, Acharya SN, Zolan ME (2000) Replication-dependent early meiotic requirement for Spo11 and Rad50. Proc Natl Acad Sci U S A 97:10477–10482

    PubMed  CAS  Google Scholar 

  • Mikhailova EI, Naranjo T, Shepherd K, Wennekes van Eden J, Heyting C, de Jong JH (1998) The effect of the wheat Ph1 locus on chromatin organization and meiotic chromosome pairing analyzed by genome painting. Chromosoma 107:339–350

    PubMed  CAS  Google Scholar 

  • Mikhailova EI, Sosnikhina1 SP, Kirillova1 GA, Tikholiz OA, Smirnov VG, R Jones N, Jenkins G (2001) Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.). J Cell Sci 114:1875–1882

    PubMed  CAS  Google Scholar 

  • Moens PB (1969) The fine structure of meiotic chromosome polarization and pairing in Locusta migratoria spermatocytes. Chromosoma 28:1–25

    PubMed  CAS  Google Scholar 

  • Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA–DNA interactions without reciprocal recombination. J Cell Sci 115:1611–1622

    PubMed  CAS  Google Scholar 

  • Molnar M, Doll E, Yamamoto A, Hiraoka Y, Kohli J (2003) Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing. J Cell Sci 116:1719–1731

    PubMed  CAS  Google Scholar 

  • Moses MJ (1956) Chromosome structures in crayfish spermatocytes. J Biophys Biochem Cytol 2:215–218

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima K, Kakihara Y, Hiraoka Y, Nojima H (2001) A novel meiosis-specific protein of fission yeast, Meu13p, promotes homologous pairing independently of homologous recombination. EMBO J 20:3871–3881

    PubMed  CAS  Google Scholar 

  • Neale MJ, Ramachandran M, Trelles-Sticken E, Scherthan H, Goldman AS (2002) Wild-type levels of Spo11-induced DSBs are required for normal single-strand resection during meiosis. Mol Cell 9:835–846

    PubMed  CAS  Google Scholar 

  • Neyton S, Lespinasse F, Moens PB, Paul R, Gaudray P, Paquis-Flucklinger V, Santucci-Darmanin S (2004) Association between MSH4 (MutS homologue 4) and the DNA strand-exchange RAD51 and DMC1 proteins during mammalian meiosis. Mol Hum Reprod 10:917–924

    PubMed  CAS  Google Scholar 

  • Niwa O, Shimanuki M, Miki F (2000) Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis. EMBO J 19:3831–3840

    PubMed  CAS  Google Scholar 

  • Noguchi (2002) Homolog pairing and two kinds of bouquets in the meiotic prophase of rye, Secale cereale. Genes Genet Syst 77:39–50

    PubMed  Google Scholar 

  • Padmore R, Cao L, Kleckner N (1991) Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66:1239–1256

    PubMed  CAS  Google Scholar 

  • Page SL, Hawley RS (2001) c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev 15:3130–3143

    PubMed  CAS  Google Scholar 

  • Pawlowski WP, Golubovskaya IN, Cande WZ (2003) Altered nuclear distribution of recombination protein RAD51 in maize mutants suggests the involvement of RAD51 in meiotic homology recognition. Plant Cell 15:1807–1816

    PubMed  CAS  Google Scholar 

  • Pecina A, Smith KN, Mezard C, Murakami H, Ohta K, Nicolas A (2002) Targeted stimulation of meiotic recombination. Cell 111:173–184

    PubMed  CAS  Google Scholar 

  • Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysak MA, Fuchs J, Schubert I (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–269

    PubMed  CAS  Google Scholar 

  • Pecinka A, Kato N, Meister A, Probst AV, Schubert I, Lam E (2005) Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. J Cell Sci 118:3751–3758

    PubMed  CAS  Google Scholar 

  • Peoples TL, Dean E, Gonzalez O, Lambourne L, Burgess SM (2002) Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing contacts. Genes Dev 16:1682–1695

    PubMed  CAS  Google Scholar 

  • Phillips CM, Wong C, Bhalla N, Carlton PM, Weiser P, Meneely PM, Dernburg AF, (2005) HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell 123:1051–1063

    PubMed  CAS  Google Scholar 

  • Pirrotta V (1999) Transvection and chromosomal trans-interaction effects. Biochim Biophys Acta 1424:M1–M8

    PubMed  CAS  Google Scholar 

  • Prieto P, Martin A, Cabrera A (2004) Chromosomal distribution of telomeric and telomeric-associated sequences in Hordeum chilense by in situ hybridization. Hereditas 141:122–127

    PubMed  CAS  Google Scholar 

  • Pukkila PJ, Lu BC (1985) Silver staining of meiotic chromosomes in the fungus, Coprinus cinereus. Chromosoma 91:108–112

    PubMed  CAS  Google Scholar 

  • Rasmussen SW (1977) The transformation of the synaptonemal complex into the “elimination chromatin” in Bombyx mori oocytes. Chromosoma 60:205–221

    PubMed  CAS  Google Scholar 

  • Rasmussen SW, Holm PB (1978) Human meiosis II: chromosome pairing and recombination nodules in human spermatocytes. Carlsberg Res Commun 42:275–327

    Google Scholar 

  • Rasmussen SW, Holm PB, Lu BC, Zickler D, Sage J (1981) Synaptonemal complex formation and distribution of recombination nodules in pachytene trivalents of triploid Coprinus cinereus. Carlsberg Res Commun 46:347–360

    Google Scholar 

  • Rockmill B, Fung JC, Branda SS, Roeder GS (2003) The Sgs1 helicase regulates chromosome synapsis and meiotic crossing over. Curr Biol 13:1954–1962

    PubMed  CAS  Google Scholar 

  • Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    PubMed  CAS  Google Scholar 

  • Rossignol JL, Faugeron G (1994) Gene inactivation triggered by recognition between DNA repeats. Experientia 50:307–317

    PubMed  CAS  Google Scholar 

  • Santucci-Darmanin S, Walpita D, Lespinasse F, Desnuelle C, Ashley T, Paquis-Flucklinger V (2000) MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J 14:1539–1547

    PubMed  CAS  Google Scholar 

  • Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol 2:621–627

    PubMed  CAS  Google Scholar 

  • Scherthan H, Bahler J, Kohli J (1994) Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J Cell Biol 127:273–285

    PubMed  CAS  Google Scholar 

  • Scherthan H, Eeils R, Trelles-Sticken E, Dietzel S, Cremer T, Walt H, Jauch A (1998) Aspects of three-dimensional chromosome reorganization during the onset of human male meiosis. J Cell Sci 111:2337–2351

    PubMed  CAS  Google Scholar 

  • Scherthan H, Jerratsch M, Dhar S, Wang YA, Goff SP, Pandita TK (2000) Meiotic telomere distribution and Sertoli cell nuclear architecture are altered in Atm- and Atm-p53-deficient mice. Mol Cell Biol 20:7773–7783

    PubMed  CAS  Google Scholar 

  • Schimenti J (2005) Synapsis or silence. Nat Genet 37:11–13

    PubMed  CAS  Google Scholar 

  • Schwacha A, Kleckner N (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83:783–791

    PubMed  CAS  Google Scholar 

  • Schwarzacher T (1997) Three stages of meiotic homologous chromosome pairing in wheat: cognition, alignment and synapsis. Sex Plant Reprod 10:324–331

    CAS  Google Scholar 

  • Shaw PJ, Abranches R, Santos AP, Beven AF, Stoger E, Wegel E, Gonzalez-Melendi P (2002) The architecture of interphase chromosomes and nucleolar transcription sites in plants. J Struct Biol 140:31–38

    PubMed  CAS  Google Scholar 

  • Sherizen D, Jang JK, Bhagat R, Kato N, McKim KS (2005) Meiotic recombination in Drosophila females depends on chromosome continuity between genetically defined boundaries. Genetics 169:767–781

    PubMed  CAS  Google Scholar 

  • Shiu PK, Metzenberg RL (2002) Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161:1483–1495

    PubMed  CAS  Google Scholar 

  • Shiu PK, Raju NB, Zickler D, Metzenberg RL (2001) Silencing of unpaired DNA during meiosis. Biological consequences and identification of a suppressor that encodes an RNA-dependent RNA polymerase. Cell 107:905–916

    PubMed  CAS  Google Scholar 

  • Shiu PK, Zickler D, Raju NB, Ruprich-Robert G, Metzenberg RL (2006) SAD-2 is required for meiotic silencing by unpaired DNA and perinuclear localization of SAD-1 RdRP. Proc Natl Acad Sci USA 103:2243–2248

    PubMed  CAS  Google Scholar 

  • Storlazzi A, Tesse S, Gargano S, James F, Kleckner N, Zickler D (2003) Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev 17:2675–2687

    PubMed  CAS  Google Scholar 

  • Sung P, Krejci L, Van Komen S, Sehorn MG (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278:42729–42732

    PubMed  CAS  Google Scholar 

  • Tanabe H, Muller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99:4424–4429

    PubMed  CAS  Google Scholar 

  • Tarsounas M, Morita T, Pearlman RE, Moens PB (1999) RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J Cell Biol

  • Tesse S, Storlazzi A, Kleckner N, Gargano S, Zickler D (2003) Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc Natl Acad Sci U S A 100:12865–12870

    PubMed  CAS  Google Scholar 

  • Thomas SE, Soltani-Bejnood M, Roth P, Dorn R, Logsdon JM Jr, McKee BD (2005) Identification of two proteins required for conjunction and regular segregation of achiasmate homologs in Drosophila male meiosis. Cell 18:555–568

    Google Scholar 

  • Tomkiel JE, Wakimoto BT, Briscoe A (2001) The teflon gene is required for maintenance of autosomal homolog pairing at meiosis I in male Drosophila melanogaster. Genetics 157:273–281

    PubMed  CAS  Google Scholar 

  • Trelles-Sticken E, Loidl J, Scherthan H (1999) Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J Cell Sci 112:651–658

    PubMed  CAS  Google Scholar 

  • Trelles-Sticken E, Dresser ME, Scherthan H (2000) Meiotic telomere protein Ndj1p is required for meiosis-specific telomere distribution, bouquet formation and efficient homologue pairing. J Cell Biol 151:95–106

    PubMed  CAS  Google Scholar 

  • Trelles-Sticken E, Adelfalk C, Loidl J, Scherthan H (2005) Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 170:213–223

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, Burgoyne PS (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47

    PubMed  CAS  Google Scholar 

  • Uetz P, L Giot G, Cagney TA, Mansfield RS, Judson JR, Knight D, Lockson V, Narayan M et al (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    PubMed  CAS  Google Scholar 

  • Vazquez J, Belmont AS, Sedat JW (2002) The dynamics of homologous chromosome pairing during male meiosis in Drosophila. Curr Biol 12:1473–1483

    PubMed  CAS  Google Scholar 

  • Villeneuve AM (1994) A cis-acting locus that promotes crossing over between X chromosomes in Caenorhabditis elegans. Genetics 136:887–902

    PubMed  CAS  Google Scholar 

  • von Wettstein D, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18:331–413

    Google Scholar 

  • Weiner BM, Kleckner N (1994) Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77:977–991

    PubMed  CAS  Google Scholar 

  • Whitby MC (2005) Making crossovers during meiosis. Biochem Soc Trans 33:1451–1455

    PubMed  CAS  Google Scholar 

  • White EJ, Cowan C, Cande WZ, Kaback DB (2004) In vivo analysis of synaptonemal complex formation during yeast meiosis. Genetics 167:51–63

    PubMed  CAS  Google Scholar 

  • Wilson PJ, Riggs CD, Hasenkampf CA (2005) Plant chromosome homology: hypotheses relating rendezvous, recognition and reciprocal exchange. Cytogenet Genome Res 109:190–197

    PubMed  CAS  Google Scholar 

  • Yamamoto A, West RR, McIntosh JR, Hiraoka Y (1999) A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J Cell Biol 145:1233–1249

    PubMed  CAS  Google Scholar 

  • Zetka MC, Rose AM (1995) The genetics of meiosis in Caenorhabditis elegans. Trends Genet 11:27–31

    PubMed  CAS  Google Scholar 

  • Zickler D (1977) Development of the synaptonemal complex and the “recombination nodules” during meiotic prophase in the seven bivalents of the fungus Sordaria macrospora Auersw. Chromosoma 61:289–316

    PubMed  CAS  Google Scholar 

  • Zickler D, Kleckner N (1998) The leptotene–zygotene transition of meiosis. Annu Rev Genet 32:619–697

    PubMed  CAS  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    PubMed  CAS  Google Scholar 

  • Zickler D, Moreau PJ, Huynh AD, Slezec AM (1992) Correlation between pairing initiation sites, recombination nodules and meiotic recombination in Sordaria macrospora. Genetics 132:135–148

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge all colleagues and, especially, Nancy Kleckner who provided stimulating discussions. I apologize for being unable to cite all work done in the field in the several topics, owing to limitations in space. Research performed in the laboratory that is cited in this review was supported by grants from the Centre National de la Recherche Scientifique (UMR8621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Zickler.

Additional information

Communicated by R. Benavente

The synaptonemal complex - 50 years

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zickler, D. From early homologue recognition to synaptonemal complex formation. Chromosoma 115, 158–174 (2006). https://doi.org/10.1007/s00412-006-0048-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0048-6

Keywords

Navigation