Skip to main content
Log in

Characterization of a new SUMO-1 nuclear body (SNB) enriched in pCREB, CBP, c-Jun in neuron-like UR61 cells

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The neuron-like UR61 cell is a stable PC12 subline that contains a mouse N-ras oncogene. Dexamethasone (Dex) treatment induces a neuron-like differentiation, which is associated with neuritogenesis and nuclear expression of the glucocorticoid receptor and c-Jun. In differentiated UR61 cells, small ubiquitin-like modifiers 1 (SUMO-1) is concentrated in a new category of SUMO-1 nuclear bodies (SNBs) distinct from promyelocytic leukemia (PML) bodies by their large size and absence of PML protein. SNBs are 1 to 3 μm in diameter and exhibit a fine granular texture by electron microscopy. They are free of splicing factors and transcription foci and show spatial associations with Cajal bodies. In addition to SUMO-1 and the E2-conjugating enzyme Ubc9, which is essential for sumoylation, SNBs concentrate the transcriptional regulators CBP, CREB, and c-Jun. Moreover, transfection experiments demonstrate that SNBs accumulate the active conjugating form of SUMO-1 but not the conjugation defective variant of SUMO-1, supporting that SNBs are sites of sumoylation. Our results suggest that SNBs play a role in the control of the nucleoplasmic concentration of transcription regulators involved in neuroprotection and survival of the UR61 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berciano MT, Novell M, Villagra NT, Casafont I, Bengoechea R, Val-Bernal F, Lafarga M (2007) Cajal body number and nucleolar size correlate with cell body mass in human sensory ganglia neurons. J Struct Biol 158:410–420

    Article  PubMed  CAS  Google Scholar 

  • Boggio R, Colombo R, Hay RT, Draetta GF, Chiocca S (2004) A mechanism for inhibiting the SUMO pathway. Mol Cell 19:549–561

    Article  Google Scholar 

  • Bohmann K, Ferreira J, Lamond AI (1995) Mutational analysis of p80 coilin indicates a functional interaction between coiled bodies and nucleolus. J Cell Biol 68:817–831

    Article  Google Scholar 

  • Boisvert FM, Hendzel MJ, Bazzett-Jones D (2000) Promyelocytic leukaemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 148:283–292

    Article  PubMed  CAS  Google Scholar 

  • Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114:2363–2373

    PubMed  CAS  Google Scholar 

  • Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy RR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859

    Article  PubMed  CAS  Google Scholar 

  • Cioce M, Lamond AI (2005) Cajal Bodies: a long history of discovery. Annu Rev Cell Dev Biol 21:105–131

    Article  PubMed  CAS  Google Scholar 

  • Comerford KM, Leonard MO, Karhausen J, Carey R, Colgan SP, Taylor CT (2003) Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Sci USA 100:986–991

    Article  PubMed  CAS  Google Scholar 

  • David G, Neptune MA, DePinho RA (2002) SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem 277:1867–1871

    Google Scholar 

  • Desterro JM, Thomson J, Hay RT (1997) Ubc9 conjugates SUMO but not ubiquitin. FEBS Lett 417:297–300

    Article  PubMed  CAS  Google Scholar 

  • Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaB-alpha inhibits NF-kappaB activation. Mol Cell 2:233–239

    Article  PubMed  CAS  Google Scholar 

  • Desterro JM, Keegan LP, Jaffray E, Hay RT, O’Connell MA, Carmo-Fonseca M (2005) SUMO-1 modification alters ADAR1 editing activity. Mol Biol Cell 16:5115–5126

    Article  PubMed  CAS  Google Scholar 

  • Dohmen RJ (2004) SUMO protein modification. Biochim Biophys Acta 29:113–131

    Google Scholar 

  • Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18:2046–2059

    Article  PubMed  CAS  Google Scholar 

  • Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M, Del Sal G (1999) Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 18:6462–6471

    Article  PubMed  CAS  Google Scholar 

  • Grande MA, van der Kraan I, van Steensel B, Schul W, de Thé H, van der Voort HTM, de Jong L, van Driel R (1996) PML-containing nuclear bodies: their spatial distribution in relation to other nuclear components. J Cell Biochem 63:280–291

    Article  PubMed  CAS  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochomocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  • Guerrero I, Pellicer A, Burstein DE (1988) Dissociation of c-Fos from ODC expression and neuronal differentiation in a PC12 subline stably transfected with an inducible N-Ras oncogene. Biochem Biophys Res 150:1185–1192

    Article  CAS  Google Scholar 

  • Hagerty T, Morgan WW, Elango N, Strong R (2001) Identification of a glucorticoid-responsive element in the promoter region of the mouse tyrosine hydroxylase gene. J Neurochem 76:825–883

    Article  PubMed  CAS  Google Scholar 

  • Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (2001) SP-RING for SUMO: new functions bloom for an ubiquitin-like protein. Cell 107:5–8

    Article  PubMed  CAS  Google Scholar 

  • Hofmann TG, Will H (2003) Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ 10:1290–1299

    Article  PubMed  CAS  Google Scholar 

  • Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ETH, Strauss JF III, Maul GG (1999) PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:212–233

    Article  Google Scholar 

  • Kamitani T, Nguyen HP, Yeh ETH (1997) Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J Biol Chem 272:14001–14004

    Article  PubMed  CAS  Google Scholar 

  • Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972

    Article  PubMed  CAS  Google Scholar 

  • Leppä S, Eriksson M, Saffrich R, Ansorg W, Bohmann D (2001) Complex functions of AP-1 transcription factors in differentiation and survival of PC12 cells. Mol Cell Biol 21:4369–4378

    Article  PubMed  Google Scholar 

  • Lieberman AP (2004) SUMO, an ubiquitin-like modifier implicated in neurodegeneration. Exp Neurol 185:204–207

    Article  PubMed  CAS  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    Article  PubMed  CAS  Google Scholar 

  • Lonze BE, Riccio A, Cohen S, Ginty DD (2002) Apoptosis, axonal growth defects and degeneration of peripheral neurons in mice lacking CREB. Neuron 34:371–385

    Article  PubMed  CAS  Google Scholar 

  • Melchior F (2000) SUMO-nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Berger M, Lehembre F, Séller JS, Haupt Y, Dejean A (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275:13321–13329

    Article  PubMed  Google Scholar 

  • Navascues J, Berciano MT, Tücker KE, Lafarga M, Matera G (2004) Targeting SMN to Cajal bodies and nuclear gems during neuritogenesis. Chromosoma 112:398–409

    Article  PubMed  CAS  Google Scholar 

  • Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M (2001) Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol 430:250–263

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  • Pountney DL, Huang Y, Burns RJ, Haan E, Thompson PD, Blumbergs PC, Gai WP (2003) SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol 184:436–446

    Article  PubMed  CAS  Google Scholar 

  • Reimer G, Pollard KM, Penning CA, Ochs RL, Lischwe NA, Tan EM (1987) Monoclonal antibody from (New Zealand Black × New Zealand White) F1 mouse and some human scleroderma sera target a Mr 34000 nucleolar protein of the U3-ribonucleoprotein particle. Arthritis Rheum 30:793–800

    Article  PubMed  CAS  Google Scholar 

  • Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR, Sendtner M (2003) SMN, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. J Cell Biol 163:801–812

    Article  PubMed  CAS  Google Scholar 

  • Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL (2003) Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 22:6537–6549

    Article  PubMed  CAS  Google Scholar 

  • Schimidt D, Muller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and P53 and repress p53 activity. Proc Natl Acad Sci U S A 99:2872–2877

    Article  CAS  Google Scholar 

  • Seeler JS, Dejean A (2001) SUMO: of branched proteins and nuclear bodies. Oncogene 20:7243–7249

    Article  PubMed  CAS  Google Scholar 

  • Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nature Reviews Mol Cell Biol 4:690–699

    Article  CAS  Google Scholar 

  • Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24:331–339

    Article  PubMed  CAS  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100:13225–13230

    Article  PubMed  CAS  Google Scholar 

  • Takahashi-Fujigasaki J, Arai K, Funata N, Fujigasaki H (2006) SUMOylation substrates in neuronal intranuclear inclusion disease. Neuropathol Appl Neurobiol 32:92–100

    Article  PubMed  CAS  Google Scholar 

  • Tavanez JP, Calado P, Braga J, Lafarga M, Carmo-Fonseca M (2005) In vivo aggregation properties of the nuclear poly(A)-binding protein PABPN1. RNA 11:752–762

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Stork JS, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296:1648–1649

    Article  PubMed  CAS  Google Scholar 

  • Verger I, Perdomo J, Crossley M (2003) Modification with SUMO. A role in transcriptional regulation. EMBO Reports 4:137–142

    Article  PubMed  CAS  Google Scholar 

  • Villagra NT, Berciano J, Altable M, Navascues J, Casafont I, Lafarga M, Berciano MT (2004) PML bodies in reactive sensory ganglion neurons of the Guillain-Barré syndrome. Neurobiol Dis 16:158–168

    Article  PubMed  CAS  Google Scholar 

  • Villagra NT, Navascues J, Val-Bernal F, Lafarga M, Berciano MT (2006) The PML nuclear inclusion of human supraoptic neurons: a new compartment with SUMO-1 and ubiquitin-proteasome associated domains. Neurobiol Dis 21:181–193

    Article  PubMed  CAS  Google Scholar 

  • Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276:13505–13508

    PubMed  CAS  Google Scholar 

  • Yamada M, Sato T, Shimohata T, Hayashi S, Igarashi S, Tsuji S, Takahashi H (2001) Interaction between neuronal intranuclear inclusions and promyelocytic leukemia protein nuclear and coiled bodies in CAG repeat diseases. Am J Pathol 159:1785–1795

    PubMed  CAS  Google Scholar 

  • Zhang H, Xing L, Rossoll W, Wichterle H, Singer RH, Bassell GJ (2006) Multiprotein complexes of the survival of motor neuron protein SMN with gemins traffic to neuronal processes and growth cones of motor neurons. J Neurosci 26:8622–8632

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Müller S, Ronchetti S, Freemont PS, Dejan A, Pandolfi PP (2000) Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2752

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Angus I Lamond (University of Dundee, Scotland) for providing the anti-coilin antibody and Dr. Joana M. Desterro (IMM of Lisbon, Portugal) for providing pGFP-SUMO-1 plasmid constructs. This study was supported by the “Direccion General de Investigacion Cientifica” (Spain; BFU2005-01030), the “Instituto de Salud Carlos III (Spain; CIBERNED), and “Fundación Marqués de Valdecilla” in Santander (Spain; API05/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Lafarga.

Additional information

Communicated by G. Matera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1Supplementary Fig. 2

Dex treatment induces neuron-like differentiation of UR61 cells into a sympathetic neuron-like phenotype. Combination of propidium iodide cytochemical staining for nucleic acids and phalloidin-FITC labeling shows euchromatic nuclei with prominent nucleoli (a), and growing neurites after 36 hours of Dex treatment (b). (c and d) Double labeling for β-actin mRNA and SMN protein reveals the concentration of the β-actin mRNA in the cell nucleus, growing neurites and growth cones (c), whereas SMN is accumulated in a CB and throughout the cytoplasm and neurites with higher concentration at the growth cones (d). (e and g) Neuron-like differentiation of UR61 cells is also associated with nuclear expression of GR (e) and c-Jun (g). Neurites are counterstained with phalliodin-FIT (f and h). Scale bar =  5 μm(GIF 789 kb)

Immunoblot of UR61 cell lysates using the rabbit polyclonal anti-PML antibody H-238 (Santa Cruz, USA). Immunolabeling produces a single band of approximately 64 kD, as is illustrated in the technical specification sheet of the manufacturer. Preparation of UR61 cell lysates and immunoblotting were performed as descrisbed previously (Navascues et al., 2004)(GIF 400 kb)

412_2007_107_Fig1-2_ESM.tif

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navascués, J., Bengoechea, R., Tapia, O. et al. Characterization of a new SUMO-1 nuclear body (SNB) enriched in pCREB, CBP, c-Jun in neuron-like UR61 cells. Chromosoma 116, 441–451 (2007). https://doi.org/10.1007/s00412-007-0107-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0107-7

Keywords

Navigation