Skip to main content
Log in

Drosophila CENP-C is essential for centromere identity

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Centromeres are specialized chromosomal domains that direct mitotic kinetochore assembly and are defined by the presence of CENP-A (CID in Drosophila) and CENP-C. While the role of CENP-A appears to be highly conserved, functional studies in different organisms suggest that the precise role of CENP-C in kinetochore assembly is still under debate. Previous studies in vertebrate cells have shown that CENP-C inactivation causes mitotic delay, chromosome missegregation, and apoptosis; however, in Drosophila, the role of CENP-C is not well-defined. We have used RNA interference depletion in S2 cells to address this question and we find that depletion of CENP-C causes a kinetochore null phenotype, and consequently, the spindle checkpoint, kinetochore–microtubule interactions, and spindle size are severely misregulated. Importantly, we show that CENP-C is required for centromere identity as CID, MEI-S332, and chromosomal passenger proteins fail to localize in CENP-C depleted cells, suggesting a tight communication between the inner kinetochore proteins and centromeres. We suggest that CENP-C might fulfill the structural roles of the human centromere-associated proteins not identified in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams RR, Maiato H, Earnshaw WC, Carmena M (2001) Essential roles of Drosophila inner centromere protein (incenp) and Aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153(4):865–880

    Article  CAS  PubMed  Google Scholar 

  • Amano M, Suzuki A, Hori T, Backer C, Okawa K, Cheeseman IM, Fukagawa T (2009) The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J Cell Biol 186(2):173–182. doi:10.1083/jcb.200903100

    Article  CAS  PubMed  Google Scholar 

  • Ando S, Yang H, Nozaki N, Okazaki T, Yoda K (2002) CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol 22(7):2229–2241

    Article  CAS  PubMed  Google Scholar 

  • Blower MD, Daigle T, Kaufman T, Karpen GH (2006) Drosophila CENP-A mutations cause a BubR1-dependent early mitotic delay without normal localization of kinetochore components. PLoS Genet 2(7):e110

    Article  PubMed  Google Scholar 

  • Carroll CW, Straight AF (2006) Centromere formation: from epigenetics to self-assembly. Trends Cell Biol 16(2):70–78

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore–microtubule interface. Nat Rev Mol Cell Biol 9(1):33–46

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR 3rd, Oegema K, Desai A (2004) A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev 18(18):2255–2268. doi:10.1101/gad.1234104 18/18/2255

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127(5):983–997

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman IM, Hori T, Fukagawa T, Desai A (2008) KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol Biol Cell 19(2):587–594. doi:10.1091/mbc.E07-10-1051

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Migeon BR (1985) Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92(4):290–296

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91(3–4):313–321

    Article  CAS  PubMed  Google Scholar 

  • Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen GH, Straight AF (2008) Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J Cell Biol 183(5):805–818

    Article  CAS  PubMed  Google Scholar 

  • Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8(5):458–469

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12(1):17–30. doi:10.1016/j.devcel.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  • Fukagawa T, Brown WR (1997) Efficient conditional mutation of the vertebrate CENP-C gene. Hum Mol Genet 6(13):2301–2308

    Article  CAS  PubMed  Google Scholar 

  • Fukagawa T, Pendon C, Morris J, Brown W (1999) CENP-C is necessary but not sufficient to induce formation of a functional centromere. EMBO J 18(15):4196–4209

    Article  CAS  PubMed  Google Scholar 

  • Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152(4):669–682

    Article  CAS  PubMed  Google Scholar 

  • Goshima G, Saitoh S, Yanagida M (1999) Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 13(13):1664–1677

    Article  CAS  PubMed  Google Scholar 

  • Goshima G, Kiyomitsu T, Yoda K, Yanagida M (2003) Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol 160(1):25–39

    Article  CAS  PubMed  Google Scholar 

  • Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316(5823):417–421

    Article  CAS  PubMed  Google Scholar 

  • Heeger S, Leismann O, Schittenhelm R, Schraidt O, Heidmann S, Lehner CF (2005) Genetic interactions of separase regulatory subunits reveal the diverged Drosophila CENP-C homolog. Genes Dev 19(17):2041–2053

    Article  CAS  PubMed  Google Scholar 

  • Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone cid promotes formation of functional ectopic kinetochores. Dev Cell 10(3):303–315

    Article  CAS  PubMed  Google Scholar 

  • Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, Dong Y, McEwen BF, Shang WH, Suzuki E, Okawa K, Cheeseman IM, Fukagawa T (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135(6):1039–1052

    Article  CAS  PubMed  Google Scholar 

  • Joglekar AP, Bloom K, Salmon ED (2009) In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr Biol 19(8):694–699

    Article  CAS  PubMed  Google Scholar 

  • Johnston K, Joglekar A, Hori T, Suzuki A, Fukagawa T, Salmon ED (2010) Vertebrate kinetochore protein architecture: protein copy number. J Cell Biol 189(6):937–943. doi:10.1083/jcb.200912022

    Article  CAS  PubMed  Google Scholar 

  • Kalitsis P, Fowler KJ, Earle E, Hill J, Choo KH (1998) Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. Proc Natl Acad Sci USA 95(3):1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Kwon MS, Hori T, Okada M, Fukagawa T (2007) CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol Biol Cell 18(6):2155–2168

    Article  CAS  PubMed  Google Scholar 

  • Liu ST, Rattner JB, Jablonski SA, Yen TJ (2006) Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol 175(1):41–53. doi:10.1083/jcb.200606020

    Article  CAS  PubMed  Google Scholar 

  • Llamazares S, Moreira A, Tavares A, Girdham C, Spruce BA, Gonzalez C, Karess RE, Glover DM, Sunkel CE (1991) Polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes Dev 5(12A):2153–2165

    Article  CAS  PubMed  Google Scholar 

  • Logarinho E, Bousbaa H, Dias JM, Lopes C, Amorim I, Antunes-Martins A, Sunkel CE (2004) Different spindle checkpoint proteins monitor microtubule attachment and tension at kinetochores in Drosophila cells. J Cell Sci 117(Pt 9):1757–1771

    Article  CAS  PubMed  Google Scholar 

  • Maffini S, Maia AR, Manning AL, Maliga Z, Pereira AL, Junqueira M, Shevchenko A, Hyman A, Yates JR 3rd, Galjart N, Compton DA, Maiato H (2009) Motor-independent targeting of clasps to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Curr Biol 19(18):1566–1572

    Article  CAS  PubMed  Google Scholar 

  • Maia AF, Lopes CS, Sunkel CE (2007) BubR1 and CENP-E have antagonistic effects upon the stability of microtubule–kinetochore attachments in Drosophila S2 cell mitosis. Cell Cycle 6(11):1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Maiato H, Sunkel CE, Earnshaw WC (2003) Dissecting mitosis by RNAi in Drosophila tissue culture cells. Biol Proced Online 5:153–161

    Article  CAS  PubMed  Google Scholar 

  • Milks KJ, Moree B, Straight AF (2009) Dissection of CENP-C-directed centromere and kinetochore assembly. Mol Biol Cell 20(19):4246–4255. doi:10.1091/mbc.E09-05-0378

    Article  CAS  PubMed  Google Scholar 

  • Moore LL, Roth MB (2001) HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J Cell Biol 153(6):1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Moore DP, Page AW, Tang TT, Kerrebrock AW, Orr-Weaver TL (1998) The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate. J Cell Biol 140(5):1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Moore LL, Stanvitch G, Roth MB, Rosen D (2005) HCP-4/CENP-C promotes the prophase timing of centromere resolution by enabling the centromere association of HCP-6 in Caenorhabditis elegans. Mol Cell Biol 25(7):2583–2592

    Article  CAS  PubMed  Google Scholar 

  • Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci USA 77(3):1627–1631

    Article  CAS  PubMed  Google Scholar 

  • Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153(6):1209–1226

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR 3rd, Desai A, Fukagawa T (2006) The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8(5):446–457

    Article  CAS  PubMed  Google Scholar 

  • Orr B, Bousbaa H, Sunkel CE (2007) Mad2-independent spindle assembly checkpoint activation and controlled metaphase–anaphase transition in Drosophila S2 cells. Mol Biol Cell 18(3):850–863

    Article  CAS  PubMed  Google Scholar 

  • Politi V, Perini G, Trazzi S, Pliss A, Raska I, Earnshaw WC, Della Valle G (2002) CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. J Cell Sci 115(Pt 11):2317–2327

    CAS  PubMed  Google Scholar 

  • Przewloka MR, Glover DM (2009) The kinetochore and the centromere: a working long distance relationship. Annu Rev Genet 43:439–465

    Article  CAS  PubMed  Google Scholar 

  • Przewloka MR, Zhang W, Costa P, Archambault V, D’Avino PP, Lilley KS, Laue ED, McAinsh AD, Glover DM (2007) Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster. PLoS ONE 2(5):e478

    Article  PubMed  Google Scholar 

  • Regnier V, Vagnarelli P, Fukagawa T, Zerjal T, Burns E, Trouche D, Earnshaw W, Brown W (2005) CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol Cell Biol 25(10):3967–3981

    Article  CAS  PubMed  Google Scholar 

  • Saitoh H, Tomkiel J, Cooke CA, Ratrie H 3rd, Maurer M, Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70(1):115–125

    Article  CAS  PubMed  Google Scholar 

  • Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28(17):2511–2531. doi:10.1038/emboj.2009.173

    Article  CAS  PubMed  Google Scholar 

  • Schittenhelm RB, Heeger S, Althoff F, Walter A, Heidmann S, Mechtler K, Lehner CF (2007) Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes. Chromosoma 116(4):385–402

    Article  CAS  PubMed  Google Scholar 

  • Sunkel CE, Coelho PA (1995) The elusive centromere: sequence divergence and functional conservation. Curr Opin Genet Dev 5(6):756–767

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Chang HL, Kagami A, Watanabe Y (2009) CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev Cell 17(3):334–343

    Article  PubMed  Google Scholar 

  • Tomkiel J, Cooke CA, Saitoh H, Bernat RL, Earnshaw WC (1994) CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J Cell Biol 125(3):531–545

    Article  CAS  PubMed  Google Scholar 

  • Torras-Llort M, Moreno-Moreno O, Azorin F (2009) Focus on the centre: the role of chromatin on the regulation of centromere identity and function. EMBO J 28(16):2337–2348

    Article  CAS  PubMed  Google Scholar 

  • Trazzi S, Bernardoni R, Diolaiti D, Politi V, Earnshaw WC, Perini G, Della Valle G (2002) In vivo functional dissection of human inner kinetochore protein CENP-C. J Struct Biol 140(1–3):39–48

    Article  CAS  PubMed  Google Scholar 

  • Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, Goldberg ML, Yokomori K, Earnshaw WC, Sullivan KF, Brinkley BR (2001) Specification of kinetochore-forming chromatin by the histone h3 variant CENP-A. J Cell Sci 114(Pt 19):3529–3542

    PubMed  Google Scholar 

  • Warren WD, Steffensen S, Lin E, Coelho P, Loupart M, Cobbe N, Lee JY, McKay MJ, Orr-Weaver T, Heck MM, Sunkel CE (2000) The Drosophila RAD21 cohesin persists at the centromere region in mitosis. Curr Biol 10(22):1463–1466

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Kitajima TS (2005) Shugoshin protects cohesin complexes at centromeres. Philos Trans R Soc Lond B Biol Sci 360(1455):515–521, discussion 521

    Article  CAS  PubMed  Google Scholar 

  • Wei RR, Al-Bassam J, Harrison SC (2007) The Ndc80/HEC1 complex is a contact point for kinetochore–microtubule attachment. Nat Struct Mol Biol 14(1):54–59

    Article  CAS  PubMed  Google Scholar 

  • Westermann S, Cheeseman IM, Anderson S, Yates JR 3rd, Drubin DG, Barnes G (2003) Architecture of the budding yeast kinetochore reveals a conserved molecular core. J Cell Biol 163(2):215–222

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Tomkiel J, Saitoh H, Johnson DH, Earnshaw WC (1996) Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C. Mol Cell Biol 16(7):3576–3586

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the members of the Sunkel lab and Hélder Maiato for comments and suggestions and Terry Orr-Weaver, Christian Lehner, Stefen Heidmann, Mike Goldberg, and Byron Williams for antibodies. We would also like to thank Gohta Goshima for providing the H2B-GFP;mCherry-tubulin stable cell line. BO holds a Doctoral studentship from FCT and this work was supported by a project grant from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio E. Sunkel.

Additional information

Communicated by A. Musacchio

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

CENP-C is poorly conserved in Drosophila. Amino acid sequence alignment of CENP-C from various species shows that the Drosophila protein bears very little homology with CENP-C protein in other species. a, b The two most conserved domains of CENP-C fail to show significant homology with the Drosophila protein. Note that the Drosophila CENP-C protein is also significantly larger than in other species (JPEG 844 kb)

Supplementary Fig. 2

CENP-C is required for kinetochore organization. a Quantification of the mean pixel intensity of CID and CENP-meta levels at kinetochores of control and CENP-C depleted cells obtained from cells shown in Fig. 2c. Control levels of CID and CENP-meta have been normalized to 1 (n = more than 200 kinetochores from 15 different cells). b Relative levels of CID versus CENP-meta were plotted to determine the relationship between both proteins 96 h after the addition of the dsRNA, where each dot represents one kinetochore. Note that there is a linear relationship between CENP-meta and CID levels. c Quantification of the relative mean pixel intensity of Nuf2 and Ndc80 levels at kinetochores of both control and CENP-C depleted cells obtained from cells shown in Fig. 2e. Control levels of Nuf2 and Ndc80 have been normalized to 1 (n = more than 150 kinetochores from 15 different cells). Relative levels of CID were plotted against d Ndc80 or e Nuf2 where each dot represents a single kinetochore. Note that there is a population of kinetochores with high levels of CID and low levels of Ndc80 and Nuf2 suggesting that Ndc80 complex mislocalization at kinetochores is specific to CENP-C depletion. All quantifications were performed using Image J software with a previously defined ROI spanning the entire kinetochore region (JPEG 842 kb)

Supplementary Fig. 3

CENP-C depletion causes failure in chromosome congression and aneuploidy. a Control and CENP-C RNAi-treated S2 cells were grown for 96 h and then fixed and stained to reveal phosphohistone H3, α-tubulin, and CID allowing classification into distinct mitotic phases. The quantification of the different mitotic phases shows that in the absence of CENP-C, cells spend little time in prometaphase, none in metaphase but accumulate at telophase. b Analysis of DNA content by fluorescence-activated cell sorting (FACS) at 48 and 96 h after the addition of the dsRNA and results were analyzed using Cell Quest data acquisition software. Note that at 96 h, CENP-C depleted cells exhibit highly variable DNA contents consistent with an S-phase delay and overall aneuploidy (JPEG 1127 kb)

Supplementary Fig. 4

Kinetochore null cells display increased spindle length. a Control and CENP-C depleted cells were incubated in MG132 (2 h) prior to fixation and stained to show DNA (blue), γ-tubulin (green) to reveal spindle poles, and CENP-C (red). Note that CENP-C depleted cells fail to align their chromosomes at the spindle equator and exhibit longer mitotic spindles than those observed in control cells. b Quantification of pole-to-pole distance (length between each γ-tubulin positive signal) in MG132-arrested cells shows that in the absence of CENP-C, spindles elongate 1.5-fold more than they do in control cells (JPEG 563 kb)

Supplementary Fig. 5

Centromere localization of MEI-S332 and CPC proteins is CENP-C dependent. Control and CENP-C depleted cells were incubated in MG132 (2 h) and colchicine for (1 h further) prior to fixation and immunofluorescence staining with specific antibodies. Relative levels of CID were plotted against a MEI-S332 or b INCENP where each dot represents a single centromere/kinetochore pair. Note that there is a population of kinetochores with high levels of CID and low levels of MEI-S332 and INCENP, suggesting that centromeric localization of MEI-S332 and INCENP is CENP-C-dependent rather than dependent on the prior localization of CID. All quantifications were performed using Image J software with a previously defined ROI. c Cells treated with MG132 (2 h) and colchicine (1 h further), then fixed and stained to reveal DNA (gray), Aurora B (green), phosphohistone H3 (PH3; red), and CID (blue). Note that Aurora B mislocalization does not affect PH3 staining (JPEG 686 kb)

Online Resource 1

Monitoring mitotic progression using S2 cells expressing H2B-GFP;mCherry-tubulin. Untreated S2 cells stably expressing H2B-GFP (green);mCherry-tubulin (red). Images were collected using a spinning disk confocal system (see “Materials and methods” section) at intervals of 30 s. NEBD is indicated by the rapid entry of mCherry-tubulin into the nuclear space and anaphase onset takes place when chromatid separation is observed (MPG 1184 kb)

Online Resource 2

CENP-C depletion causes accelerated mitotic exit and chromosome missegregation. S2 cells stably expressing H2B-GFP (green);mCherry-tubulin (red) previously treated for 96 h with specific dsRNA against CENP-C. Images were collected using a spinning disk confocal system (see “Materials and methods” section) at intervals of 30 s. Note that in the absence of CENP-C, the time from NEBD to anaphase onset is severely shortened and overall chromosome missegregation is observed (MPG 679 kb)

Online Resource 3

CENP-C depletion causes accelerated mitotic exit and chromosome missegregation. S2 cells stably expressing H2B-GFP (green);mCherry-tubulin (red) previously treated for 96 h with specific dsRNA against CENP-C. Images were collected using a spinning disk confocal system (see “Materials and methods” section) at intervals of 30 s. Note that in the absence of CENP-C, the time from NEBD to anaphase onset is severely shortened and overall chromosome missegregation is observed (MPG 727 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orr, B., Sunkel, C.E. Drosophila CENP-C is essential for centromere identity. Chromosoma 120, 83–96 (2011). https://doi.org/10.1007/s00412-010-0293-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-010-0293-6

Keywords

Navigation