Skip to main content
Log in

The Polycomb group protein CRAMPED is involved with TRF2 in the activation of the histone H1 gene

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

CRAMPED (CRM), conserved from plants to animals, was previously characterized genetically as a repressive factor involved in the formation of facultative and constitutive heterochromatin (Polycomb silencing, position effect variegation). We show that crm is dynamically regulated during replication and identify the Histone gene cluster (His-C) as a major CRM target. Surprisingly, CRM is specifically required for the expression of the Histone H1 gene, like the promoter-bound transcription factor TRF2. Consistently with this, CRM genetically interacts and co-immunoprecipitates with TRF2. However, the Polycomb phenotypes observed in crm mutants are not observed in TRF2 hypomorphic mutants, suggesting that they correspond to independent roles of CRM. CRM is thus a highly pleiotropic factor involved in both activation and repression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ai HW, Shaner NC, Cheng Z, Tsien RY, Campbell RE (2007) Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46:5904–5910

    Article  PubMed  CAS  Google Scholar 

  • Bashirullah A, Lam G, Yin VP, Thummel CS (2007) dTrf2 is required for transcriptional and developmental responses to ecdysone during Drosophila metamorphosis. Dev Dyn 236:3173–3179

    Article  PubMed  CAS  Google Scholar 

  • Birve A, Sengupta AK, Beuchle D, Larsson J, Kennison JA, Rasmuson-Lestander A, Muller J (2001) Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development 128:3371–3379

    PubMed  CAS  Google Scholar 

  • Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific {varphi}C31 integrases. Proc Natl Acad Sci USA 104:3312–3317

    Article  PubMed  CAS  Google Scholar 

  • Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5:158–163

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  • Ehsan H, Reichheld JP, Durfee T, Roe JL (2004) TOUSLED kinase activity oscillates during the cell cycle and interacts with chromatin regulators. Plant Physiol 134:1488–1499

    Article  PubMed  CAS  Google Scholar 

  • Gambetta MC, Oktaba K, Muller J (2009) Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325:93–96

    Article  PubMed  CAS  Google Scholar 

  • Gibert JM, Karch F, Schlötterer C (2011) Segregating variation in the Polycomb group gene cramped alters the effect of temperature on multiple traits. PLoS Genet 7(1):e1001280

    Article  PubMed  CAS  Google Scholar 

  • Gibert JM, Peronnet F, Schlotterer C (2007) Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genet 3:e30

    Article  PubMed  Google Scholar 

  • Gildea JJ, Lopez R, Shearn A (2000) A screen for new trithorax group genes identified little imaginal discs, the Drosophila melanogaster homologue of human retinoblastoma binding protein 2. Genetics 156:645–663

    PubMed  CAS  Google Scholar 

  • Isogai Y, Keles S, Prestel M, Hochheimer A, Tjian R (2007) Transcription of histone gene cluster by differential core-promoter factors. Genes Dev 21:2936–2949

    Article  PubMed  CAS  Google Scholar 

  • Klymenko T, Papp B, Fischle W, Kocher T, Schelder M, Fritsch C, Wild B, Wilm M, Muller J (2006) A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 20:1110–1122

    Article  PubMed  CAS  Google Scholar 

  • Kopytova DV, Krasnov AN, Kopantceva MR, Nabirochkina EN, Nikolenko JV, Maksimenko O, Kurshakova MM, Lebedeva LA, Yerokhin MM, Simonova OB et al (2006) Two isoforms of Drosophila TRF2 are involved in embryonic development, premeiotic chromatin condensation, and proper differentiation of germ cells of both sexes. Mol Cell Biol 26:7492–7505

    Article  PubMed  CAS  Google Scholar 

  • Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P, Kingston RE (2002) The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 22:6070–6078

    Article  PubMed  CAS  Google Scholar 

  • Liu JL, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall JG (2006) The Drosophila melanogaster Cajal body. J Cell Biol 172:875–884

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Wontakal SN, Emelyanov AV, Morcillo P, Konev AY, Fyodorov DV, Skoultchi AI (2009) Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure. Genes Dev 23:452–465

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  PubMed  CAS  Google Scholar 

  • Nekrasov M, Wild B, Muller J (2005) Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep 6:348–353

    Article  PubMed  CAS  Google Scholar 

  • Ner SS, Harrington MJ, Grigliatti TA (2002) A role for the Drosophila SU(VAR)3-9 protein in chromatin organization at the histone gene cluster and in suppression of position-effect variegation. Genetics 162:1763–1774

    PubMed  CAS  Google Scholar 

  • Pitulescu ME, Teichmann M, Luo L, Kessel M (2009) TIPT2 and geminin interact with basal transcription factors to synergize in transcriptional regulation. BMC Biochem 10:16

    Article  PubMed  Google Scholar 

  • Rabenstein MD, Zhou S, Lis JT, Tjian R (1999) TATA box-binding protein (TBP)-related factor 2 (TRF2), a third member of the TBP family. Proc Natl Acad Sci USA 96:4791–4796

    Article  PubMed  CAS  Google Scholar 

  • Rozenblatt-Rosen O, Rozovskaia T, Burakov D, Sedkov Y, Tillib S, Blechman J, Nakamura T, Croce CM, Mazo A, Canaani E (1998) The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc Natl Acad Sci USA 95:4152–4157

    Article  PubMed  CAS  Google Scholar 

  • Salvaing J, Decoville M, Mouchel-Vielh E, Bussiere M, Daulny A, Boldyreva L, Zhimulev I, Locker D, Peronnet F (2006) Corto and DSP1 interact and bind to a maintenance element of the Scr Hox gene: understanding the role of Enhancers of trithorax and Polycomb. BMC Biol 4:9

    Article  PubMed  Google Scholar 

  • Saurin AJ, Shao Z, Erdjument-Bromage H, Tempst P, Kingston RE (2001) A Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412:655–660

    Article  PubMed  CAS  Google Scholar 

  • Schuettengruber B, Cavalli G (2009) Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136:3531–3542

    Article  PubMed  CAS  Google Scholar 

  • Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, Tolhuis B, van Lohuizen M, Tanay A, Cavalli G (2009) Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol 7:e13

    Article  PubMed  Google Scholar 

  • Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M, Pirrotta V (2006) Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 38:700–705

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10:697–708

    PubMed  CAS  Google Scholar 

  • Siriaco G, Deuring R, Chioda M, Becker PB, Tamkun JW (2009) Drosophila ISWI regulates the association of histone H1 with interphase chromosomes in vivo. Genetics 182:661–669

    Article  PubMed  CAS  Google Scholar 

  • Spierer A, Begeot F, Spierer P, Delattre M (2008) SU(VAR)3-7 links heterochromatin and dosage compensation in Drosophila. PLoS Genet 4:e1000066

    Article  PubMed  Google Scholar 

  • van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428

    Article  PubMed  Google Scholar 

  • Yamamoto Y, Girard F, Bello B, Affolter M, Gehring WJ (1997) The cramped gene of Drosophila is a member of the Polycomb-group, and interacts with mus209, the gene encoding Proliferating Cell Nuclear Antigen. Development 124:3385–3394

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all members of the Spierer, Pauli and Karch laboratories for stimulating discussions, in particular, Rob Maeda. We thank the Bloomington Drosophila Stock Center for the TRF2 G0039 and H2Av–RFP lines, Joseph Gall for the UAS–DLsm11–Venus line, Walter Gehring for the anti-CRM antibody, Frédérique Peronnet for the anti-PCNA antibody, and Robert Tjian for the anti-TRF2 antibody. We thank Mylène Docquier and Didier Chollet for their assistance at the genomic platform, Geneva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Gibert.

Additional information

Communicated by R. Paro

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig 1

Expression of mCherry-CRM and nuclear GFP under the control of HS-Gal4 in salivary glands (GIF 143 kb) In the absence of heat shock, a homogenous expression of nuclear GFP is observed, whereas mCherry–CRM level is higher in some nuclei.

High resolution image (TIFF 3152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibert, JM., Karch, F. The Polycomb group protein CRAMPED is involved with TRF2 in the activation of the histone H1 gene. Chromosoma 120, 297–307 (2011). https://doi.org/10.1007/s00412-011-0312-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-011-0312-2

Keywords

Navigation