Skip to main content
Log in

A telomerase-independent component of telomere loss in chromatin assembly factor 1 mutants of Arabidopsis thaliana

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Dysfunction of chromatin assembly factor 1 in FASCIATA mutants (fas) of Arabidopsis thaliana results in progressive loss of telomeric DNA. Although replicative telomere shortening is typically associated with incomplete resynthesis of their ends by telomerase, no change in telomerase activity could be detected in vitro in extracts from fas mutants. Besides a possible telomerase malfunction, the telomere shortening in fas mutants could presumably be due to problems with conventional replication of telomeres. To distinguish between the possible contribution of suboptimal function of telomerase in fas mutants under in vivo conditions and problems in conventional telomere replication, we crossed fas and tert (telomerase reverse transcriptase) knockout mutants and analyzed telomere shortening in segregated fas mutants, tert mutants, and double fas tert mutants in parallel. We demonstrate that fas tert knockouts show greater replicative telomere shortening than that observed even in the complete absence of telomerase (tert mutants). While the effect of tert and fas mutations on telomere lengths in double mutants is additive, manifestations of telomere dysfunction in double fas tert mutants (frequency of anaphase bridges, onset of chromosome end fusions, and common involvement of 45S rDNA in chromosome fusion sites) are similar to those in tert mutants. We conclude that in addition to possible impairment of telomerase action, a further mechanism contributes to telomere shortening in fas mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAF1:

Chromatin assembly factor 1

fas1 :

Mutant in the FASCIATA 1 gene

fas2 :

Mutant in the FASCIATA 2 gene

tert :

Mutant in the telomerase reverse transcriptase (TERT) gene

ASF1:

Anti-silencing function 1 protein

MSI1:

Multicopy suppressor of IRA1

References

  • Bosco N, de Lange T (2012) A TRF1-controlled common fragile site containing interstitial telomeric sequences. Chromosoma 121(5):465–474. doi:10.1007/s00412-012-0377-6

    Article  PubMed  CAS  Google Scholar 

  • Boule JB, Zakian VA (2006) Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res 34(15):4147–4153. doi:10.1093/Nar/Gkl561

    Article  PubMed  CAS  Google Scholar 

  • Buonomo SBC, Wu YP, Ferguson D, de Lange T (2009) Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J Cell Biol 187(3):385–398. doi:10.1083/jcb.200902039

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • El Hage A, French SL, Beyer AL, Tollervey D (2010) Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Develop 24(14):1546–1558. doi:10.1101/Gad.573310

    Article  PubMed  Google Scholar 

  • Endo M, Ishikawa Y, Osakabe K, Abe K, Ito Y, Kameya T, Shibahara K, Kaya H, Araki T, Ichikawa H, Toki S (2006) Analysis of Arabidopsis CAF-1 mutants showing enhanced homologous recombination. Plant Cell Physiol 47:S60–S60

    Article  Google Scholar 

  • Exner V, Taranto P, Schonrock N, Gruissem W, Hennig L (2006) Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. Development 133(21):4163–4172. doi:10.1242/dev.02599

    Article  PubMed  CAS  Google Scholar 

  • Fajkus J, Fulneckova J, Hulanova M, Berkova K, Riha K, Matyasek R (1998) Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Mol Gen Genet 260(5):470–474

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald MS, Riha K, Gao F, Ren S, McKnight TD, Shippen DE (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci U S A 96(26):14813–14818

    Article  PubMed  CAS  Google Scholar 

  • Fojtova M, Peska V, Dobsakova Z, Mozgova I, Fajkus J, Sykorova E (2011) Molecular analysis of T-DNA insertion mutants identified putative regulatory elements in the AtTERT gene. J Exp Bot 62(15):5531–5545

    Article  PubMed  CAS  Google Scholar 

  • Gaillard PH, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G (1996) Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86(6):887–896

    Article  PubMed  CAS  Google Scholar 

  • Gallego ME, White CI (2005) DNA repair and recombination functions in Arabidopsis telomere maintenance. Chromosome Res 13(5):481–491

    Article  PubMed  CAS  Google Scholar 

  • Heacock M, Spangler E, Riha K, Puizina J, Shippen DE (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. EMBO J 23(11):2304–2313. doi:10.1038/sj.emboj.76002367600236

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9(1):15–26. doi:10.1038/nrg2206

    Article  PubMed  CAS  Google Scholar 

  • Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 15(6):295–302. doi:10.1016/j.tcb.2005.04.004

    Article  PubMed  CAS  Google Scholar 

  • Hernandez P, Martinparras L, Martinezrobles ML, Schvartzman JB (1993) Conserved features in the mode of replication of eukaryotic ribosomal-RNA genes. EMBO J 12(4):1475–1485

    PubMed  CAS  Google Scholar 

  • Chen Z, Hui JTL, Ingouff M, Sundaresan V, Berger F (2008) Chromatin assembly factor 1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana. Development 135(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Kamakaka RT, Bulger M, Kaufman PD, Stillman B, Kadonaga JT (1996) Postreplicative chromatin assembly by Drosophila and human chromatin assembly factor 1. Mol Cell Biol 16(3):810–817

    PubMed  CAS  Google Scholar 

  • Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11(3):345–357

    Article  PubMed  CAS  Google Scholar 

  • Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104(1):131–142

    Article  PubMed  CAS  Google Scholar 

  • Kirik A, Pecinka A, Wendeler E, Reiss B (2006) The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell 18(10):2431–2442

    Article  PubMed  CAS  Google Scholar 

  • Kohler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE polycomb group complex and required for seed development. EMBO J 22(18):4804–4814. doi:10.1093/emboj/cdg444

    Article  PubMed  Google Scholar 

  • Leyser HM, Furner IJ (1992) Characterization of three shoot apical meristem mutants of Arabidopsis thaliana. Development 116:397–403

    Google Scholar 

  • Lin YL, Pasero P (2012) Interference between DNA replication and transcription as a cause of genomic instability. Curr Genomics 13(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Liu WH, Roemer SC, Port AM, Churchill ME (2012) CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Res. doi:10.1093/nar/gks906

  • Lopez-Estrano C, Schvartzman JB, Krimer DB, Hernandez P (1998) Co-localization of polar replication fork barriers and rRNA transcription terminators in mouse rDNA. J Mol Biol 277(2):249–256. doi:10.1006/jmbi.1997.1607

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Estrano C, Schvartzman JB, Krimer DB, Hernandez P (1999) Characterization of the pea rDNA replication fork barrier: putative cis-acting and trans-acting factors. Plant Mol Biol 40(1):99–110. doi:10.1023/A:1026405311132

    Article  PubMed  CAS  Google Scholar 

  • Mandakova T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20(10):2559–2570. doi:10.1105/tpc.108.062166

    Article  PubMed  CAS  Google Scholar 

  • Mello JA, Sillje HH, Roche DM, Kirschner DB, Nigg EA, Almouzni G (2002) Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3(4):329–334. doi:10.1093/embo-reports/kvf068kvf068

    Article  PubMed  CAS  Google Scholar 

  • Mokros P, Vrbsky J, Siroky J (2006) Identification of chromosomal fusion sites in Arabidopsis mutants using sequential bicolour BAC-FISH. Genome 49(8):1036–1042. doi:10.1139/g06-082

    Article  PubMed  Google Scholar 

  • Mozgova I, Mokros P, Fajkus J (2010) Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell 22(8):2768–2780. doi:10.1105/tpc.110.076182

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Kaya H, Takeda S, Abe M, Ogawa Y, Kato M, Kakutani T, Scheid OM, Araki T, Shibahara K (2006) Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes Cells 11(2):153–162

    Article  PubMed  CAS  Google Scholar 

  • Opresko PL (2008) Telomere ResQue and preservation-roles for the Werner syndrome protein and other RecQ helicases. Mech Ageing Dev 129(1–2):79–90. doi:10.1016/j.mad.2007.10.007

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Parra E, Gutierrez C (2007) The many faces of chromatin assembly factor 1. Trends Plant Sci 12(12):570–576

    Article  PubMed  CAS  Google Scholar 

  • Reinholz E (1966) Radiation induced mutants showing changed inflorescence characteristics. Arab Inf Serv 3:19–20

    Google Scholar 

  • Riha K, Fajkus J, Siroky J, Vyskot B (1998) Developmental control of telomere lengths and telomerase activity in plants. Plant Cell 10(10):1691–1698

    PubMed  CAS  Google Scholar 

  • Riha K, McKnight TD, Griffing LR, Shippen DE (2001) Living with genome instability: plant responses to telomere dysfunction. Science 291(5509):1797–1800. doi:10.1126/science.1057110291/5509/1797

    Article  PubMed  CAS  Google Scholar 

  • Ruckova E, Friml J, Prochazkova Schrumpfova P, Fajkus J (2008) Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants. Plant Mol Biol 66(6):637–646. doi:10.1007/s11103-008-9295-7

    Article  PubMed  CAS  Google Scholar 

  • Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138(1):90–103. doi:10.1016/j.cell.2009.06.021

    Article  PubMed  CAS  Google Scholar 

  • Sharp JA, Fouts ET, Krawitz DC, Kaufman PD (2001) Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol 11(7):463–473

    Article  PubMed  CAS  Google Scholar 

  • Shibahara K, Stillman B (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96(4):575–585

    Article  PubMed  CAS  Google Scholar 

  • Schonrock N, Exner V, Probst A, Gruissem W, Hennig L (2006) Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J Biol Chem 281(14):9560–9568

    Article  PubMed  Google Scholar 

  • Siroky J, Zluvova J, Riha K, Shippen DE, Vyskot B (2003) Rearrangements of ribosomal DNA clusters in late generation telomerase-deficient Arabidopsis. Chromosoma 112(3):116–123. doi:10.1007/s00412-003-0251-7

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58(1):15–25

    Article  PubMed  CAS  Google Scholar 

  • Stewart JA, Wang F, Chaiken MF, Kasbek C, Chastain PD, Wright WE, Price CM (2012) Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J 31(17):3537–3549. doi:10.1038/emboj.2012.215

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ, Kobayashi R, Kadonaga JT (2001) Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 21(19):6574–6584

    Article  PubMed  CAS  Google Scholar 

  • Wahba L, Amon JD, Koshland D, Vuica-Ross M (2011) RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Molecular Cell 44(6):978–988. doi:10.1016/j.molcel.2011.10.017

    Article  PubMed  CAS  Google Scholar 

  • Winkler DD, Zhou H, Dar MA, Zhang Z, Luger K (2012) Yeast CAF-1 assembles histone (H3-H4)2 tetramers prior to DNA deposition. Nucleic Acids Res 40(20):10139–10149. doi:10.1093/nar/gks812

    Article  PubMed  CAS  Google Scholar 

  • Worsdell WC (1905) Fasciation: its meaning and origin. New Phytol 4:55–74

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ronald Hancock for critical reading of the manuscript and Jana Kapustová for excellent technical assistance. This work was supported by the Czech Science Foundation (P501/11/0289) and by the project “CEITEC—Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Fajkus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 158 kb)

ESM 2

(PDF 64 kb)

ESM 3

(PDF 114 kb)

ESM 4

(PDF 2.00 mb)

ESM 5

(PDF 332 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaške, K., Mokroš, P., Mozgová, I. et al. A telomerase-independent component of telomere loss in chromatin assembly factor 1 mutants of Arabidopsis thaliana . Chromosoma 122, 285–293 (2013). https://doi.org/10.1007/s00412-013-0400-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0400-6

Keywords

Navigation