Skip to main content
Log in

The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice—of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adega F, Guedes-Pinto H, Chaves R (2009) Satellite DNA in the karyotype evolution of domestic animals—clinical considerations. Cytogenet Genome Res 126:12–20

    PubMed  CAS  Google Scholar 

  • Adolph S, Klein J (1981) Robertsonian variation in Mus musculus from central Europe, Spain, and Scotland. J Heredity 72:219–221

    CAS  Google Scholar 

  • Ashley T, Gaeth AP, Inagaki H, Seftel A, Cohen MM, Anderson LK, Kurahashi H, Emanuel BS (2006) Meiotic recombination and spatial proximity in the etiology of the recurrent t(11;22). Am J Hum Genet 79:524–538

    PubMed Central  PubMed  CAS  Google Scholar 

  • Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E, Hoeijmakers JH, de Boer P, Grootegoed JA (2005) Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 25:1041–1053

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bandyopadhyay R, Berend SA, Page SL, Choo KH, Shaffer LG (2001) Satellite III sequences on 14p and their relevance to Robertsonian translocation formation. Chromosome Res 9:235–242

    PubMed  CAS  Google Scholar 

  • Basu J, Stromberg G, Compitello G, Willard HF, Van Bokkelen G (2005) Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res 33:587–596

    PubMed Central  PubMed  CAS  Google Scholar 

  • Belkhir K, Bolomier V, Bonhomme F, Boursot P, Britton-Davidian J, Desmarais E, Catalan J, Catzeflis F, Orth A, Vanlerberghe F (1987) New Robertsonian population. Mouse News Letter 78:60

    Google Scholar 

  • Berrios S, Manterola M, Prieto Z, Lopez-Fenner J, Page J, Fernandez-Donoso R (2010) Model of chromosome associations in Mus domesticus spermatocytes. Biol Res 43:275–285

    PubMed  Google Scholar 

  • Berríos S, Manieu C, López-Fenner J, Ayarza E, Page J, González M, Manterola M, Fernández-Donoso R (2014) Robertsonian chromosomes and the nuclear architecture of mouse meiotic prophase spermatocytes. Biol Res 47:16

    PubMed Central  PubMed  Google Scholar 

  • Bonhomme F, Britton-Davidian J, Catalan J, Dabonneville F, Thaler L (1983) Robertsonian variation in the Balearic Isles. Mouse News Letter 69:35

    Google Scholar 

  • Boursot P, Auffray J-C, Britton-Davidian J, Bonhomme F (1993) The evolution of house mice. Ann Rev Ecol Syst 24:119–152

    Google Scholar 

  • Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:e138

    PubMed Central  PubMed  Google Scholar 

  • Britton-Davidian J, Nadeau JH, Croset H, Thaler L (1989) Genetic differentiation and origin of Robertsonian populations of the house mouse (Mus musculus domesticus Rutty). Genet Res 53:29–44

    PubMed  CAS  Google Scholar 

  • Britton-Davidian J, Catalan J, Ramalhinho MG, Ganem G, Auffray J-C, Capela R, Biscoito M, Searle JB, Mathias MD (2000) Rapid chromosomal evolution in island mice. Nature 403:158

    PubMed  CAS  Google Scholar 

  • Britton-Davidian J, Catalan J, Ramalhinho MG, Auffray J-C, Nunes AC, Gazave E, Searle JB, Mathias ML (2005) Chromosomal phylogeny of Robertsonian races of the house mouse on the island of Madeira: testing between alternative mutational processes. Genet Res 86:171–183

    PubMed  CAS  Google Scholar 

  • Bryden W (1933) A comparison of the chromosomes of the rat and the mouse. J Genet 27:421–433

    Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Turner JM (2009) The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 10:207–216

    PubMed  CAS  Google Scholar 

  • Campbell P, Good JM, Nachman MW (2013) Meiotic sex chromosome inactivation is disrupted in sterile hybrid male house mice. Genetics 193:819–828

    PubMed Central  PubMed  CAS  Google Scholar 

  • Capanna E (1982) Robertsonian numerical variation in animal speciation: Mus musculus, an emblematic model. In: Barigozzi C (ed) Mechanisms of speciation. Liss, New York, pp 155–177

    Google Scholar 

  • Capanna E, Redi CA (1995) Whole-arm reciprocal translocation (WART) between Robertsonian chromosomes: finding of a Robertsonian heterozygous mouse with karyotype derived through WARTs. Chromosome Res 3:135–137

    PubMed  CAS  Google Scholar 

  • Capanna E, Gropp A, Winking H, Noack G, Civitelli MV (1976) Robertsonian metacentrics in the mouse. Chromosoma 58:341–353

    PubMed  CAS  Google Scholar 

  • Capanna E, Castiglia R, Solano E (2009) Men and mice: mouse population genetics in the Aeolian archipelago. In: Casellato S, Burighel P, Minelli A (eds) Life and time: the evolution of life and its history. Padova, Cleup, pp 59–74

    Google Scholar 

  • Castiglia R, Capanna E (2000) Contact zone between chromosomal races of Mus musculus domesticus. 2. Fertility and segregation in laboratory-reared and wild mice heterozygous for multiple Robertsonian rearrangements. Heredity 85:147–156

    PubMed  Google Scholar 

  • Cazaux B, Catalan J, Justy F, Escudé C, Desmarais E, Britton-Davidian J (2013) Evolution of the structure and composition of house mouse satellite DNA sequences in the subgenus Mus (Rodentia: Muridea): a cytogenomic approach. Chromosoma 122:209–220

    PubMed  CAS  Google Scholar 

  • Cerda MC, Berríos S, Fernández-Donoso R, Garagna S, Redi CA (1999) Organization of complex nuclear domains in somatic mouse cells. Biol Cell 91:55–65

    PubMed  CAS  Google Scholar 

  • Chatti N, Ganem G, Benzekri K, Catalan J, Britton-Davidian J, Saïd K (1999) Microgeographical distribution of two chromosomal races of house mice in Tunisia: pattern and origin of habitat partitioning. Proc R Soc Lond B 266:1561–1569

    CAS  Google Scholar 

  • Cucchi T, Vigne JD, Auffray J-C (2005) First occurrence of the house mouse (Mus musculus domesticus Schwarz & Schwarz, 1943) in the western Mediterranean: a zooarchaeological revision of sub-fossil house mouse occurrences. Biol J Linn Soc 84:429–445

    Google Scholar 

  • De Rop V, Padeganeh A, Maddox PS (2012) CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly. Chromosoma 121:527–538

    PubMed Central  PubMed  Google Scholar 

  • Eaker S, Pyle A, Cobb J, Handel MA (2001) Evidence for meiotic spindle checkpoint from analysis of spermatocytes from Robertsonian-chromosome heterozygous mice. J Cell Sci 114:2953–2965

    PubMed  CAS  Google Scholar 

  • Everett CA, Searle JB, Wallace BM (1996) A study of meiotic pairing, nondisjunction and germ cell death in laboratory mice carrying Robertsonian translocations. Genet Res 67:239–247

    PubMed  CAS  Google Scholar 

  • Fachinetti D, Folco HD, Nechemia-Arbely Y, Valente LP, Nguyen K, Wong AJ, Zhu Q, Holland AJ, Desai A, Jansen LE, Cleveland DW (2013) A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol 15:1056–1066

    PubMed  CAS  Google Scholar 

  • Fernández-Donoso R, Berríos S, Page J, Merani MS, Lizarralde MS, Vidal-Roja L, Bianchi NO (2001) Robertsonian chromosome polymorphism of Akodon molinae (Rodentia: Sigmodontidae): analysis of trivalents in meiotic prophase. Rev Chil Hist Nat 74:107–119

    Google Scholar 

  • Franchini P, Castiglia R, Capanna E (2008) Reproductive isolation between chromosomal races of the house mouse Mus musculus domesticus in a parapatric contact area revealed by an analysis of multiple unlinked loci. J Evol Biol 21:502–513

    PubMed  CAS  Google Scholar 

  • Franchini P, Colangelo P, Solano E, Capanna E, Verheyen E, Castiglia R (2010) Reduced gene flow at pericentromeric loci in a hybrid zone involving chromosomal races of the house mouse Mus musculus domesticus. Evolution 64:2020–2032

    PubMed  Google Scholar 

  • Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, Gupta RV, Montgomery J, Morenzoni MM, Nilsen GB, Pethiyagoda CL, Stuve LL, Johnson FM, Daly MJ, Wade CM, Cox DR (2007) A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448:1050–1053

    PubMed  CAS  Google Scholar 

  • Ganem G (2012) Behaviour, ecology, and speciation in the house mouse. In: Macholán M, Baird SJE, Munclinger P, Piálek J (eds) Evolution of the house mouse. Cambridge University Press, Cambridge, pp 373–406 (Cambridge Series in Morphology and Molecules)

    Google Scholar 

  • Garagna S, Zuccotti M, Searle JB, Redi CA, Wilkinson PJ (1989) Spermatogenesis in heterozygotes for Robertsonian chromosomal rearrangements from natural populations of the common shrew, Sorex araneus. J Reprod Fertil 87:431–438

    PubMed  CAS  Google Scholar 

  • Garagna S, Redi CA, Zuccotti M, Britton-Davidian J, Winking H (1990) Kinetics of oogenesis in mice heterozygous for Robertsonian translocations. Differentiation 42:167–171

    PubMed  CAS  Google Scholar 

  • Garagna S, Redi CA, Capanna E, Andayani N, Alfano RM, Doi P, Viale G (1993) Genome distribution, chromosomal allocation, and organization of the major and minor satellite DNAs in 11 species and subspecies of the genus Mus. Cytogenet Cell Genet 64:247–255

    PubMed  CAS  Google Scholar 

  • Garagna S, Broccoli D, Redi CA, Searle JB, Cook HJ, Capanna E (1995) Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma 103:685–692

    PubMed  CAS  Google Scholar 

  • Garagna S, Zuccotti M, Redi CA, Capanna E (1997) Trapping speciation. Nature 390:241–242

    PubMed  CAS  Google Scholar 

  • Garagna S, Marziliano N, Zuccotti M, Searle JB, Capanna E, Redi CA (2001a) Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc Natl Acad Sci USA 98:171–175

    PubMed Central  PubMed  CAS  Google Scholar 

  • Garagna S, Zuccotti M, Thornhill A, Fernandez-Donoso R, Berrios S, Capanna E, Redi CA (2001b) Alteration of nuclear architecture in male germ cells of chromosomally derived subfertile mice. J Cell Sci 114:4429–4434

    PubMed  CAS  Google Scholar 

  • Garagna S, Zuccotti M, Capanna E, Redi CA (2002) High-resolution organization of mouse telomeric and pericentromeric DNA. Cytogenet Genome Res 96:125–129

    PubMed  CAS  Google Scholar 

  • Gazave E, Catalan J, Ramalhinho MG, Mathias ML, Nunes AC, Dumas D, Britton-Davidian J, Auffray J-C (2003) The non-random occurrence of Robertsonian fusion in the house mouse. Genet Res 81:33–42

    PubMed  CAS  Google Scholar 

  • Geisler M, Gropp A (1967) Chromosome polymorphism in the European hedgehog Erinaceus europaeus (Insectivora). Nature 214:396–397

    PubMed  CAS  Google Scholar 

  • Giménez MD, White TA, Hauffe HC, Panithanarak T, Searle JB (2013) Understanding the basis of diminished gene flow between hybridizing chromosome races of the house mouse. Evolution 67:1446–1462

    PubMed  Google Scholar 

  • Graham AN, Kalitsis P (2014) Chromosome Y centromere array deletion leads to impaired centromere function. PLoS One 9:e86875

    PubMed Central  PubMed  Google Scholar 

  • Gropp A, Tettenborn U, von Lehmann E (1969) Chromosomenuntersuchungen bei der Tabakmaus (M. poschiavinus) und bei den Hybriden mit der Laboratorumsmaus. Experientia 25:875–876

    PubMed  CAS  Google Scholar 

  • Gropp A, Winking H, Zech L, Müller H (1972) Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma 39:265–288

    PubMed  CAS  Google Scholar 

  • Guenatri M, Bailly D, Maison C, Almouzni G (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166:493–505

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gündüz İ, López-Fuster MJ, Ventura J, Searle JB (2001) Clinal analysis of a chromosomal hybrid zone in the house mouse. Genet Res 77:41–51

    PubMed  Google Scholar 

  • Gündüz İ, Pollock CL, Giménez MD, Förster DW, White TA, Sans-Fuentes MA, Hauffe HC, Ventura J, López-Fuster MJ, Searle JB (2010) Staggered chromosomal hybrid zones in the house mouse: relevance to reticulate evolution and speciation. Genes 1:193–209

    PubMed Central  PubMed  Google Scholar 

  • Haaf T, Mater AG, Wienberg J, Ward DC (1995) Presence and abundance of CENP-B box sequences in great ape subsets of primate-specific alpha-satellite DNA. J Mol Evol 41:487–491

    PubMed  CAS  Google Scholar 

  • Handel MA (2004) The XY body: a specialized meiotic chromatin domain. Exp Cell Res 296:57–63

    PubMed  CAS  Google Scholar 

  • Harper L, Golubovskaya I, Cande WZ (2004) A bouquet of chromosomes. J Cell Sci 117:4025–4032

    PubMed  CAS  Google Scholar 

  • Hauffe HC, Piálek J (1997) Evolution of the chromosomal races of Mus musculus domesticus in the Rhaetian Alps: the roles of whole-arm reciprocal translocation and zonal raciation. Biol J Linn Soc 62:255–278

    Google Scholar 

  • Hauffe HC, Searle JB (1992) A disappearing speciation event? Nature 357:26

    Google Scholar 

  • Hauffe HC, Searle JB (1998) Chromosomal heterozygosity and fertility in house mice (Mus musculus domesticus) from Northern Italy. Genetics 150:1143–1154

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hauffe HC, Giménez MD, Searle JB (2012) Chromosomal hybrid zones in the house mouse. In: Macholán M, Baird SJE, Munclinger P, Piálek J (eds) Evolution of the house mouse. Cambridge University Press, Cambridge, pp 407–430 (Cambridge Series in Morphology and Molecules)

    Google Scholar 

  • Hochwagen A, Amon A (2006) Checking your breaks: surveillance mechanisms of meiotic recombination. Curr Biol 16:R217–R228

    PubMed  CAS  Google Scholar 

  • Homer H (2011) New insights into the genetic regulation of homologue disjunction in mammalian oocytes. Cytogenet Genome Res 133:209–222

    PubMed Central  PubMed  CAS  Google Scholar 

  • Homolka D, Ivanek R, Capkova J, Jansa P, Forejt J (2007) Chromosomal rearrangement interferes with meiotic X chromosome inactivation. Genome Res 17:1431–1437

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hori T, Fukagawa T (2012) Establishment of the vertebrate kinetochores. Chromosome Res 20:547–561

    PubMed  CAS  Google Scholar 

  • Hörz W, Altenburger W (1981) Nucleotide sequence of mouse satellite DNA. Nucleic Acids Res 9:683–696

    PubMed Central  PubMed  Google Scholar 

  • Hübner R (1992) Chromosomal and biochemical variation in wild mice from Switzerland: relevance for models of chromosomal evolution in European house mice. Unpublished PhD thesis, University of Oxford

  • Hudson DF, Fowler KJ, Earle E, Saffery R, Kalitsis P, Trowell H, Hill J, Wreford NG, de Kretser DM, Cancilla MR, Howman E, Hii L, Cutts SM, Irvine DV, Choo KH (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J Cell Biol 141:309–319

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huet S, Lavelle C, Ranchon H, Carrivain P, Victor J-M, Bancau A (2014) Relevance and limitations of crowding, fractal, and polymer models to describe nuclear architecture. In International Review of Cell and Molecular Biology, Volume 307 (eds H. Ronald and W. J. Kwang), pp. 443–479: Academic Press

  • Hunt PA, Hassold TJ (2002) Sex matters in meiosis. Science 296:2181–2183

    PubMed  CAS  Google Scholar 

  • Inagaki A, Schoenmakers S, Baarends WM (2010) DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis. Epigenetics 5:255–266

    PubMed  CAS  Google Scholar 

  • Jachowicz JW, Santenard A, Bender A, Muller J, Torres-Padilla ME (2013) Heterochromatin establishment at pericentromeres depends on nuclear position. Genes Dev 27:2427–2432

    PubMed Central  PubMed  CAS  Google Scholar 

  • Johannisson R, Winking H (1994) Synaptonemal complexes of chains and rings in mice heterozygous for multiple Robertsonian translocations. Chromosome Res 2:137–145

    PubMed  CAS  Google Scholar 

  • Johannisson R, Winking H (1998) Pachytene chromosomes in trisomy 19 male mice with Robertsonian translocations. Chromosome Res 6:285–294

    PubMed  CAS  Google Scholar 

  • Joseph A, Mitchell AR, Miller OJ (1989) The organization of the mouse satellite DNA at centromeres. Exp Cell Res 183:494–500

    PubMed  CAS  Google Scholar 

  • Kalitsis P, Griffiths B, Choo KHA (2006) Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation. Proc Natl Acad Sci USA 103:8786–8791

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kapoor M, de Oca M, Luna R, Liu G, Lozano G, Cummings C, Mancini M, Ouspenski I, Brinkley BR, May GS (1998) The cenpB gene is not essential in mice. Chromosoma 107:570–576

    PubMed  CAS  Google Scholar 

  • King M (1993) Species evolution: the role of chromosome change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kipling D, Cooke HJ (1990) Hypervariable ultra-long telomeres in mice. Nature 347:400–402

    PubMed  CAS  Google Scholar 

  • Kipling D, Warburton PE (1997) Centromeres, CENP-B and Tigger too. Trends Genet 4:141–145

    Google Scholar 

  • Kipling D, Ackford HE, Taylor BA, Cooke HJ (1991) Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere. Genomics 11:235–241

    PubMed  CAS  Google Scholar 

  • Kipling D, Wilson HE, Mitchell AR, Taylor BA, Cooke HJ (1994) Mouse centromere mapping using oligonucleotide probes that detect variants of the minor satellite. Chromosoma 103:46–55

    PubMed  CAS  Google Scholar 

  • Kipling D, Mitchell AR, Masumoto H, Wilson HE, Nicol L, Cooke HJ (1995) CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli. Mol Cell Biol 15:4009–4020

    PubMed Central  PubMed  CAS  Google Scholar 

  • Komissarov AS, Gavrilova EV, Demin SJ, Ishov AM, Podgornaya OI (2011) Tandemly repeated DNA families in the mouse genome. BMC Genomics 28(12):531

    Google Scholar 

  • Kouznetsova A, Wang H, Bellani M, Camerini-Otero RD, Jessberger R, Hoog C (2009) BRCA1-mediated chromatin silencing is limited to oocytes with a small number of asynapsed chromosomes. J Cell Sci 122:2446–2452

    PubMed  CAS  Google Scholar 

  • Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280:547–553

    PubMed  CAS  Google Scholar 

  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    PubMed  CAS  Google Scholar 

  • LeMaire-Adkins R, Radke K, Hunt PA (1997) Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol 139:1611–1619

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lister LM, Kouznetsova A, Hyslop LA, Kalleas D, Pace SL, Barel JC, Nathan A, Floros V, Adelfalk C, Watanabe Y, Jessberger R, Kirkwood TB, Höög C, Herbert M (2010) Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr Biol 20:1511–1521

    PubMed  CAS  Google Scholar 

  • Long JA (1908) Some maturation stages of the mouse egg. Science 27:443–444

    Google Scholar 

  • Longo F, Garagna S, Merico V, Orlandini G, Gatti R, Scandroglio R, Redi CA, Zuccotti M (2003) Nuclear localization of NORs and centromeres in mouse oocytes during folliculogenesis. Mol Reprod Dev 66:279–290

    PubMed  CAS  Google Scholar 

  • Mahadevaiah SK, Bourc’his D, de Rooij DG, Bestor TH, Turner JM, Burgoyne PS (2008) Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. J Cell Biol 182:263–276

    PubMed Central  PubMed  CAS  Google Scholar 

  • Manterola M, Page J, Vasco C, Berrios S, Parra MT, Viera A, Rufas JS, Zuccotti M, Garagna S, Fernandez-Donoso R (2009) A high incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple Robertsonian translocations. PLoS Genet 5:e1000625

    PubMed Central  PubMed  Google Scholar 

  • Medarde N, López-Fuster MJ, Mũnoz-Mũnoz F, Ventura J (2012) Spatio-temporal variation in the structure of a chromosomal polymorphism zone in the house mouse. Heredity 109:78–89

    PubMed Central  PubMed  CAS  Google Scholar 

  • Merico V, Pigozzi MI, Esposito A, Merani MS, Garagna S (2003) Meiotic recombination and spermatogenic impairment in Mus musculus domesticus carrying multiple simple Robertsonian translocations. Cytogenet Genome Res 103:321–329

    PubMed  CAS  Google Scholar 

  • Merico V, de Barboza GD, Vasco C, Ponce R, Rodriguez V, Garagna S, de Talamoni NT (2008) A mitochondrial mechanism is involved in apoptosis of Robertsonian mouse male germ cells. Reproduction 135:797–804

    PubMed  CAS  Google Scholar 

  • Merico V, Giménez MD, Vasco C, Zuccotti M, Searle JB, Hauffe HC, Garagna S (2013) Chromosomal speciation in mice: a cytogenetic analysis of recombination. Chromosome Res 21:523–533

    PubMed  CAS  Google Scholar 

  • Mitsainas GP, Giagia-Athanasopoulou EB (2005) Studies on the Robertsonian chromosomal variation of Mus musculus domesticus (Rodentia, Muridae) in Greece. Biol J Linn Soc 84:503–513

    Google Scholar 

  • Mitsainas GP, Giagia-Athanasopoulou EB (2009) Possible involvement of whole-arm reciprocal translocations (WARTs) in the evolution of a Mus musculus domesticus Robertsonian system from Greece. Rend Fis Acc Lincei 20:153–162

    Google Scholar 

  • Mlynarski EE, Obergfell CJ, O’Neill MJ, O’Neill RJ (2010) Divergent patterns of breakpoint reuse in Muroid rodents. Mamm Genome 21:77–87

    PubMed  CAS  Google Scholar 

  • Muro Y, Masumoto H, Yoda K, Nozaki N, Ohashi M, Okazaki T (1992) Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box. J Cell Biol 116:585–596

    PubMed  CAS  Google Scholar 

  • Nachman MW, Searle JB (1995) Why is the house mouse karyotype so variable? Trends Ecol Evol 10:397–402

    PubMed  CAS  Google Scholar 

  • Nancé V, Vanlerberghe F, Nielsen JT, Bonhomme F, Britton-Davidian J (1990) Chromosomal introgression in house mice from the hybrid zone between M. m. domesticus and M. m. musculus in Denmark. Biol J Linn Soc 41:215–227

    Google Scholar 

  • Nanda I, Schneider-Rasp S, Winking H, Schmid M (1995) Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangements. Chromosome Res 3:399–409

    PubMed  CAS  Google Scholar 

  • Naumova AK, Fayer S, Leung J, Boateng KA, Camerini-Otero RD, Taketo T (2013) Dynamics of response to asynapsis and meiotic silencing in spermatocytes from Robertsonian translocation carriers. PLoS One 8:e75970

    PubMed Central  PubMed  CAS  Google Scholar 

  • Navarro J, Vidal F, Benet J, Templado C, Marina S, Egozcue J (1991) XY-trivalent association and synaptic anomalies in a male carrier of a Robertsonian t(13;14) translocation. Hum Reprod 6:376–381

    PubMed  CAS  Google Scholar 

  • Neale MJ, Keeney S (2006) Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442:153–158

    PubMed  CAS  Google Scholar 

  • Nguyen TT, Aniskin VM, Gerbault-Seureau M, Planton H, Renard JP, Nguyen BX, Hassanin A, Volobouev VT (2008) Phylogenetic position of the saola (Pseudoryx nghetinhensis) inferred from cytogenetic analysis of eleven species of Bovidae. Cytogenet Genome Res 122:41–54

    PubMed  CAS  Google Scholar 

  • Ohzeki J, Nakano M, Okada T, Masumoto H (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159:765–775

    PubMed Central  PubMed  CAS  Google Scholar 

  • Okada T, Ohzeki J, Nakano M, Yoda K, Brinkley WR, Larionov V, Masumoto H (2007) CENP-B controls centromere formation depending on the chromatin context. Cell 131:1287–1300

    PubMed  CAS  Google Scholar 

  • Page J, de la Fuente R, Manterola M, Parra MT, Viera A, Berrios S, Fernandez-Donoso R, Rufas JS (2012) Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis? Chromosoma 121:307–326

    PubMed  CAS  Google Scholar 

  • Painter TS (1928) A comparison of the chromosomes of the rat and mouse with reference to the question of chromosome homology in mammals. Genetics 13:180–189

    PubMed Central  PubMed  CAS  Google Scholar 

  • Panithanarak T, Hauffe HC, Dallas JF, Glover A, Ward RG, Searle JB (2004) Linkage-dependent gene flow in a house mouse chromosomal hybrid zone. Evolution 58:184–192

    PubMed  Google Scholar 

  • Pardo-Manuel de Villena F, Sapienza C (2001) Female meiosis drives karyotypic evolution in mammals. Genetics 159:1179–1189

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168:1356–1358

    PubMed  CAS  Google Scholar 

  • Perez-Castro AV, Shamanski FL, Meneses JJ, Lovato TL, Vogel KG, Moyzis RK, Pedersen R (1998) Centromeric protein B null mice are viable with no apparent abnormalities. Dev Biol 201:135–143

    PubMed  CAS  Google Scholar 

  • Pertile MD, Graham AN, Choo KHA, Kalitsis P (2009) Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability. Genome Res 19:2202–2213

    PubMed Central  PubMed  CAS  Google Scholar 

  • Piálek J, Hauffe HC, Searle JB (2005) Chromosomal variation in the house mouse. Biol J Linn Soc 84:535–563

    Google Scholar 

  • Pietras DF, Bennett KL, Siracusa LD, Woodworth-Gutai M, Chapman VM, Gross KW, Kane-Haas C, Hastie ND (1983) Construction of a small Mus musculus repetitive DNA library: identification of a new satellite sequence in Mus musculus. Nucleic Acids Res 11:6965–6983

    PubMed Central  PubMed  CAS  Google Scholar 

  • Plohl M, Luchetti A, Mestrović N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72–82

    PubMed  CAS  Google Scholar 

  • Rebuzzini P, Castiglia R, Nergadze SG, Mitsainas G, Munclinger P, Zuccotti M, Capanna E, Redi CA, Garagna S (2009) Quantitative variation of LINE-1 sequences in five species and three subspecies of the subgenus Mus and in five Robertsonian races of Mus musculus domesticus. Chromosome Res 17:65–76

    PubMed  CAS  Google Scholar 

  • Redi CA, Capanna E (1988) Robertsonian heterozygotes in the house mouse and the fate of their germ cells. In: Daniel A (ed) The cytogenetics of mammalian autosomal rearrangements. Liss, New York, pp 315–359

    Google Scholar 

  • Redi CA, Garagna S, Hilscher B, Winking H (1985) The effects of some Robertsonian chromosome combinations on the seminiferous epithelium of the mouse. J Embryol Exp Morphol 85:1–19

    PubMed  CAS  Google Scholar 

  • Redi CA, Garagna S, Della Valle G, Bottiroli G, Dell’Orto P, Viale G, Peverali FA, Raimondi E, Forejt J (1990) Differences in the organization and chromosomal allocation of satellite DNA between the European long tailed house mice Mus domesticus and Mus musculus. Chromosoma 99:11–17

    PubMed  CAS  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    PubMed  Google Scholar 

  • Roeder GS, Bailis JM (2000) The pachytene checkpoint. Trends Genet 16:395–403

    PubMed  CAS  Google Scholar 

  • Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A, de Rooij DG, Burgoyne PS, Turner JM (2010) Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 20:2117–2123

    PubMed  CAS  Google Scholar 

  • Sage RD, Atchley WR, Capanna E (1993) House mice as models in systematic biology. Syst Biol 42:523–561

    Google Scholar 

  • Saïd K, Jacquart T, Montgelard C, Sonjaya H, Helal AN, Britton-Davidian J (1986) Robertsonian house mouse populations in Tunisia: a karyological and biochemical study. Genetica 68:151–156

    Google Scholar 

  • Sasaki N, Yamauchi H, Tomohiro N, Agui T (2013) The telocentric tandem repeat at the p-arm is not conserved in Mus musculus subspecies. Gene 513:214–218

    PubMed  CAS  Google Scholar 

  • Scherthan H (2007) Telomeres and meiosis in health and disease. Cell Mol Life Sci 64:117–124

    PubMed  CAS  Google Scholar 

  • Schimenti J (2005) Synapsis or silence. Nat Genet 37:11–13

    PubMed  CAS  Google Scholar 

  • Searle JB (1990) A cytogenetic analysis of reproduction in common shrews (Sorex araneus) from a karyotypic hybrid zone. Hereditas 113:121–132

    Google Scholar 

  • Searle JB (1993) Chromosomal hybrid zones in eutherian mammals. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, New York, pp 309–353

    Google Scholar 

  • Searle JB, Hübner R, Wallace BMN, Garagna S (1990) Robertsonian variation in wild mice and shrews. Chromosomes Today 10:253–263

    Google Scholar 

  • Solano E, Castiglia R, Corti M (2007) A new chromosomal race of the house mouse, Mus musculus domesticus, in the Vulcano Island-Aeolian Archipelago, Italy. Hereditas 144:75–77

    PubMed  Google Scholar 

  • Solano E, Castiglia R, Capanna E (2009) Chromosomal evolution of the house mouse, Mus musculus domesticus, in the Aeolian Archipelago (Sicily, Italy). Biol J Linn Soc 96:194–202

    Google Scholar 

  • Szamalek JM, Goidts V, Searle JB, Cooper DN, Hameister H, Kehrer-Sawatzki H (2006) The chimpanzee-specific pericentric inversions that distinguish humans and chimpanzees have identical breakpoints in Pan troglodytes and Pan paniscus. Genomics 87:39–45

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Tachiwana H, Yoda K, Masumoto H, Okazaki T, Kurumizaka H, Yokoyama S (2005) Human centromere protein B induces translational positioning of nucleosomes on alpha-satellite sequences. J Biol Chem 280:41609–41618

    PubMed  CAS  Google Scholar 

  • Therman E, Susman M (1993) Human chromosomes: structure, behavior, and effects, 3rd edn. Springer Verlag, New York

    Google Scholar 

  • Tichy H, Vucak I (1987) Chromosomal polymorphism in the house mouse (Mus domesticus) of Greece and Yugoslavia. Chromosoma 95:31–36

    PubMed  CAS  Google Scholar 

  • Tomascik-Cheeseman L, Marchetti F, Lowe X, Shamanski FL, Nath J, Pedersen RA, Wyrobek AJ (2002) CENP-B is not critical for meiotic chromosome segregation in male mice. Mutat Res 513:197–203

    PubMed  CAS  Google Scholar 

  • Trifonov VA, Kosyakova N, Romanenko SA, Stanyon R, Graphodatsky AS, Liehr T (2010) New insights into the karyotypic evolution in muroid rodents revealed by multicolor banding applying murine probes. Chromosome Res 18:265–275

    PubMed  CAS  Google Scholar 

  • Turner JM (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831

    PubMed  CAS  Google Scholar 

  • Turner JM, Aprelikova O, Xu X, Wang R, Kim S, Chandramouli GV, Barrett JC, Burgoyne PS, Deng CX (2004) BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 14:2135–2142

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, Burgoyne PS (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS (2006) Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev Cell 10:521–529

    PubMed  CAS  Google Scholar 

  • Vasco C, Manterola M, Page J, Zuccotti M, de la Fuente R, Redi CA, Fernandez-Donoso R, Garagna S (2012) The frequency of heterologous synapsis increases with aging in Robertsonian heterozygous male mice. Chromosome Res 20:269–278

    PubMed  CAS  Google Scholar 

  • Veyrunes F, Dobigny G, Yang F, O’Brien PC, Catalan J, Robinson TJ, Britton-Davidian J (2006) Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proc R Soc B 273:2925–2934

    PubMed Central  PubMed  Google Scholar 

  • Vissel B, Choo KHA (1989) Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics 5:407–414

    PubMed  CAS  Google Scholar 

  • Vogt E, Kirsch-Volders M, Parry J, Eichenlaub-Ritter U (2008) Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat Res 651:14–29

    PubMed  CAS  Google Scholar 

  • Volobouev V, Vogt N, Viegas-Péquignot E, Malfoy B, Dutrillaux B (1995) Characterization and chromosomal location of two repeated DNAs in three Gerbillus species. Chromosoma 104:252–259

    PubMed  CAS  Google Scholar 

  • Wallace BMN, Searle JB (1994) Oogenesis in homozygotes and heterozygotes for Robertsonian rearrangements from natural populations of the common shrew, Sorex araneus. J Reprod Fertil 100:231–237

    PubMed  CAS  Google Scholar 

  • Wallace BMN, Searle JB, Everett CA (1992) Male meiosis and gametogenesis in wild house mice (Mus musculus domesticus) from a chromosomal hybrid zone; a comparison between “simple” Robertsonian heterozygotes and homozygotes. Cytogenet Cell Genet 61:211–220

    PubMed  CAS  Google Scholar 

  • Wallace BMN, Searle JB, Everett CA (2002) The effect of multiple simple Robertsonian heterozygosity on chromosome pairing and fertility of wild-stock house mice (Mus musculus domesticus). Cytogenet Genome Res 96:276–286

    PubMed  CAS  Google Scholar 

  • White TA, Bordewich M, Searle JB (2010) A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as a model systems. Syst Biol 59:262–276

    PubMed  CAS  Google Scholar 

  • Winking H, Reuter C, Bostelmann H (2000) Unequal nondisjunction frequencies of trivalent chromosomes in male mice heterozygous for two Robertsonian translocations. Cytogenet Genome Res 91:303–306

    CAS  Google Scholar 

  • Wójcik JM, Searle JB (1988) The chromosome complement of Sorex granarius—the ancestral karyotype of the common shrew (Sorex araneus)? Heredity 61:225–229

    PubMed  Google Scholar 

  • Wong AK, Rattner JB (1988) Sequence organization and cytological localization of the minor satellite of mouse. Nucleic Acids Res 16:11645–11661

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652

    PubMed  CAS  Google Scholar 

  • Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, Bonhomme F, Yu AH, Nachman MW, Piálek J, Tucker P, Boursot P, McMillan L, Churchill GA, de Villena FP (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43:648–655

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yasmineh WG, Yunis JJ (1969) Satellite DNA in mouse autosomal heterochromatin. Biochem Biophys Res Comm 35:779–782

    PubMed  CAS  Google Scholar 

  • Zeng K, de las Heras JI, Ross A, Yang J, Cooke H, Shen MH (2004) Localisation of centromeric proteins to a fraction of mouse minor satellite DNA on a mini-chromosome in human, mouse and chicken cells. Chromosoma 113:84–91

    PubMed  CAS  Google Scholar 

  • Zima J, Gaichenko VA, Macholan M, Radjabli SI, Sablina OV, Wójcik JM (1990) Are Robertsonian variations a frequent phenomenon in mouse populations in Eurasia? Biol J Linn Soc 41:229–233

    Google Scholar 

Download references

Acknowledgments

We thank the many colleagues and students who have worked with us on the Robertsonian phenomenon. We are indebted to Ernesto Capanna for his generous gift of the picture of him and Alfred Gropp. We are grateful to the institutions and foundations that have contributed funding for the development of our work. S.G. was supported by Fondo di Ateneo per la Ricerca, University of Pavia (Italy); M.Z. was supported by Finanziamento Ricerca Locale, University of Parma (Italy); J.P. was supported by grant BFU2009/10987 from Ministerio de Ciencia e Innovación (Spain); and R.F.D. was supported by FONDECYT grant 1120160 (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Garagna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garagna, S., Page, J., Fernandez-Donoso, R. et al. The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma 123, 529–544 (2014). https://doi.org/10.1007/s00412-014-0477-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-014-0477-6

Keywords

Navigation