Skip to main content

Advertisement

Log in

Comparative spatial and temporal localisation of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: an ageing study

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

This is the first study to immunolocalise perlecan in meniscal tissues and to demonstrate how its localisation varied with ageing relative to aggrecan and type I, II and IV collagen. Perlecan was present in the middle and inner meniscal zones where it was expressed by cells of an oval or rounded morphology. Unlike the other components visualised in this study, perlecan was strongly cell associated and its levels fell significantly with age onset and cell number decline. The peripheral outer meniscal zones displayed very little perlecan staining other than in small blood vessels. Picrosirius red staining viewed under polarised light strongly delineated complex arrangements of slender discrete randomly oriented collagen fibre bundles as well as transverse, thick, strongly oriented, collagen tie bundles in the middle and outer meniscal zones. The collagen fibres demarcated areas of the meniscus which were rich in anionic toluidine blue positive proteoglycans; immunolocalisations confirmed the presence of aggrecan and perlecan. When meniscal sections were examined macroscopically, type II collagen localisation in the inner meniscal zone was readily evident in the 2- to 7-day-old specimens; this became more disperse in the older meniscal specimens. Type I collagen had a widespread distribution in all meniscal zones at all time points. Type IV collagen was strongly associated with blood vessels in the 2- to 7-day-old meniscal specimens but was virtually undetectable at the later time points (>7 month).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu JG, Ketpura NI, Reversade B, De Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol 4:599–604

    PubMed  CAS  Google Scholar 

  • Ahluwalia S, Fehm M, Murray MM, Martin SD, Spector M (2001) Distribution of smooth muscle actin containing cells in the human meniscus. J Orthop Res 19:659–664

    Article  PubMed  CAS  Google Scholar 

  • Ahmed AM (1992) The load bearing role of the knee menisci. In: Mow VC, Arnoczky SP, Jackson DW (eds) Knee meniscus, Basic and Clinical Foundations. Raven Press, NY, pp 59–74

    Google Scholar 

  • Appleyard RC, Ghosh P, Swain MV (1999) Biomechanical, histological and immunohistological studies of patellar cartilage in an ovine model of osteoarthritis induced by lateral meniscectomy. Osteoarthritis Cartilage 7:281–294

    Article  PubMed  CAS  Google Scholar 

  • Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV, Murrell GA (2003) Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage 11:65–77

    Article  PubMed  CAS  Google Scholar 

  • Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y (1999) Perlecan is essential for cartilage and cephalic development. Nat Genet 23:354–358

    Article  PubMed  CAS  Google Scholar 

  • Armstrong S, Read R, Ghosh P (1994) The effects of intraarticular hyaluronan on cartilage and subchondral bone changes in an ovine model of early osteoarthritis. J Rheumatol 21:680–688

    PubMed  CAS  Google Scholar 

  • Aviezer D, Hecht D, Safran M, Eisinger M, David G, Yayon A (1994) Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Becker R, Pufe T, Kulow S, Giessmann N, Neumann W, Mentlein R, Petersen W (2004) Expression of vascular endothelial growth factor during healing of the meniscus in a rabbit model. J Bone Joint Surg Br 86:1082–1087

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson E, Mörgelin M, Sasaki T, Timpl R, Heinegard D, Aspberg A (2002) The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J Biol Chem 277:15061–15068

    Article  PubMed  CAS  Google Scholar 

  • Bhargava MM, Attia ET, Murrell GA, Dolan MM, Warren RF, Hannafin JA (1999) The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med 27:636–643

    PubMed  CAS  Google Scholar 

  • Bland Y, Ashhurst D (1996) Changes in the content of the fibrillar collagens and the expression of their mRNAs in the menisci of the rabbit knee joint during development and ageing. Histochem J 28:265–274

    Article  PubMed  CAS  Google Scholar 

  • Bohnsack M, Borner C, Schmolke S, Moller H, Wirth CJ, Ruhmann O (2003) Clinical results of arthroscopic meniscal repair using biodegradable screws. Knee Surg Sports Traumatol Arthrosc 11:379–383

    Article  PubMed  Google Scholar 

  • Boyd KT, Myers PT (2003) Meniscus preservation: rationale, repair techniques and results. The Knee 10:1–11

    Article  PubMed  Google Scholar 

  • Brown JC, Sasaki T, Göhring W, Yamada Y, Timpl R (1997) The C-terminal domain V of perlecan promotes β1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur J Biochem 250:39–46

    Article  PubMed  CAS  Google Scholar 

  • Buma P, Ramrattan NN, van Tienen TG, Veth RP (2004) Tissue engineering of the meniscus. Biomaterials 25:1523–1532

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt D, Hwa SY, Ghosh P (2001) A novel microassay for the quantitation of the sulfated glycosaminoglycan content of histological sections: its application to determine the effects of Diacerhein on cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage 9:238–247

    Article  PubMed  CAS  Google Scholar 

  • Cake MA, Read RA, Guillou B, Ghosh P (2000) Modification of articular cartilage and subchondral bone pathology in an ovine meniscectomy model of osteoarthritis by avocado and soya unsaponifiables (ASU). Osteoarthritis Cartilage 8:404–411

    Article  PubMed  CAS  Google Scholar 

  • Cake MA, Read RA, Appleyard RC, Hwa SY, Ghosh P (2004) The nitric oxide donor glyceryl trinitrate increases subchondral bone sclerosis and cartilage degeneration following ovine meniscectomy. Osteoarthritis Cartilage 12:974–981

    Article  PubMed  Google Scholar 

  • Chang Z, Meyer K, Rapraeger AC, Friedl A (2000) Differential ability of HS proteoglycans to assemble the fibroblast growth factor receptor complex in situ. FASEB J 14:137–144

    PubMed  CAS  Google Scholar 

  • Cheung H.(1987) Distribution of type I, II III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res 16:343–56

    Article  PubMed  CAS  Google Scholar 

  • Collier S, Ghosh P (1995) Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthritis Cartilage 3:127–138

    Article  PubMed  CAS  Google Scholar 

  • Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Englund M, Roos EM, Roos HP, Lohmander LS (2001) Patient-relevant outcomes fourteen years after meniscectomy: influence of type of meniscal tear and size of resection. Rheumatology 40:631–639

    Article  PubMed  CAS  Google Scholar 

  • Eyre D, Muir H (1975) The distribution of different molecular species of collagens in fibrous, elastic and hyaline cartilages of the pig. Biochem J 151:595–602

    PubMed  CAS  Google Scholar 

  • Eyre D, Wu J (1983) Collagen of fibrocartilage: a distinctive molecular phenotype in bovine meniscus. FEBS Letts 158:265–270

    Article  CAS  Google Scholar 

  • Farng E, Sherman O (2004) Meniscal repair devices: a clinical and biomechanical literature review. Arthroscopy 20:273–286

    Article  PubMed  Google Scholar 

  • Fermor B, Jeffcoat D, Hennerbichler A, Pisetsky DS, Weinberg JB, Guilak F (2004) The effects of cyclic mechanical strain and tumor necrosis factor alpha on the response of cells of the meniscus. Osteoarthritis Cartilage 12:956–962

    Article  PubMed  Google Scholar 

  • French MM, Smith SE, Akanbi K, Sanford T, Hecht J, Farach-Carson MC, Carson DD (1999) Expression of HS proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in-vitro. J Cell Biol 145:1103–1115

    Article  PubMed  CAS  Google Scholar 

  • Gao J (2000) Immunolocalization of types I, II, and X collagen in the tibial insertion sites of the medial meniscus. Knee Surg Sports Traumatol Arthrosc 8:61–65

    Article  PubMed  CAS  Google Scholar 

  • Ghadially FN (1983) Fine structure of synovial joints: a text and atlas of the ultrastructure of normal and pathological articular tissues. Butterworths, London

    Google Scholar 

  • Ghadially FN, Thomas I, Yong NK, Lalonde J-MA (1978) Ultrastructure of rabbit semilunar cartilages. J Anat 125:499–517

    PubMed  CAS  Google Scholar 

  • Ghosh P, Read R, Numata Y, Smith S, Armstrong S, Wilson D (1993a) The effects of intraarticular administration of hyaluronan in a model of early osteoarthritis in sheep. II. Cartilage composition and proteoglycan metabolism. Semin Arthritis Rheum 22(6 Suppl 1):31–42

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Read R, Armstrong S, Wilson D, Marshall R, McNair P (1993b) The effects of intraarticular administration of hyaluronan in a model of early osteoarthritis in sheep. I. Gait analysis and radiological and morphological studies. Semin Arthritis Rheum 22(6 Suppl 1):18–30

    Article  PubMed  CAS  Google Scholar 

  • Gomes RR, Farach-Carson MC, Carson DD, (2004) Perlecan functions in chondrogenesis: insights from in vitro and in vivo models. Cells Tissues Organs 176:79–86

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson E, Aszodi A, Ortega N, Hunziker EB, Denker HW, Werb Z, Fassler R (2003) Role of collagen type II and perlecan in skeletal development. Ann N Y Acad Sci 995:140–150

    Article  PubMed  CAS  Google Scholar 

  • Handler M, Yurchenko PD, Iozzo RV (1997) Developmental expression of perlecan during murine embryogenesis. Devel Dyn 210:130–145

    Article  CAS  Google Scholar 

  • Hardingham TE (1998) Chapter 5. Cartilage: aggrecan-link protein-hyaluronan aggregates http://www.glycoforum.gr.jp/science/hyaluronan/HA05/HA05E.html

  • Hascall VC, Heinegård D (1974) Aggregation of cartilage proteoglycans. The role of hyaluronic acid. J Biol Chem 249:4232–4241

    PubMed  CAS  Google Scholar 

  • Hassell J, Yamada Y, Arikawa-Hirasawa E (2002) Role of perlecan in skeletal development and diseases. Glycoconj J 19:263–267

    Article  PubMed  CAS  Google Scholar 

  • Hellio Le Graverand MP, Ou Y, Schield-Yee T, Barclay L, Hart D, Natsume T, Rattner JB (2001a) The cells of the rabbit meniscus: their arrangement, interrelationship, morphological and cytoarchitecture. J Anat 198:525–535

    Article  CAS  Google Scholar 

  • Hellio Le Graverand MP, Sciore P, Eggerer J, Rattner JP, Vignon E, Barclay L, Hart DA, Rattner JB (2001d) Formation and phenotype of cell clusters in osteoarthritic meniscus. Arthritis Rheum 44:1808–1818

    Article  PubMed  CAS  Google Scholar 

  • Hellio Le Graverand MP, Vignon E, Otterness IG, Hart DA (2001b) Early changes in lapine menisci during osteoarthritis development: Part I: cellular and matrix alterations. Osteoarthritis Cartilage 9:56–64

    Article  PubMed  CAS  Google Scholar 

  • Hellio Le Graverand MP, Vignon E, Otterness IG, Hart DA (2001c) Early changes in lapine menisci during osteoarthritis development: Part II: molecular alterations. Osteoarthritis Cartilage 9:65–72

    Article  PubMed  CAS  Google Scholar 

  • Hopf M, Göhring W, Mann K, Timpl R (2001) Mapping of binding sites for nidogens, fibulin-2, fibronectin and heparin to different IG modules of perlecan. J Mol Biol 311:529–541

    Article  PubMed  CAS  Google Scholar 

  • Hwa SY, Burkhardt D, Little C, Ghosh P (2001) The effects of orally administered diacerein on cartilage and subchondral bone in an ovine model of osteoarthritis. J Rheumatol 28:825–834

    PubMed  CAS  Google Scholar 

  • Imler SM, Doshi AN, Levenston ME (2004) Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage 12:736–744

    Article  PubMed  Google Scholar 

  • Iozzo RV (2001) Heparan sulphate proteoglycans: intricate molecules with intriguing functions. J Clin Invest 108:165–167

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV, Cohen IR, Grässel S, Murdoch AD (1994) The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302:625–639

    PubMed  CAS  Google Scholar 

  • Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  PubMed  CAS  Google Scholar 

  • Kallunki P, Tryggvason K (1992) Human basement membrane heparan sulfate proteoglycan core protein: A 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin neural cell adhesion molecules, and epidermal growth factor. J Cell Biol 116:559–571

    Article  PubMed  CAS  Google Scholar 

  • Kambic HE, McDevitt CA (2005) Spatial organisation of type I and II collagen in the canine meniscus. J Orthop Res 23:142–149

    Article  PubMed  CAS  Google Scholar 

  • Kambic HE, Futani H, McDevitt CA (2000) Cell, matrix changes and alpha-smooth muscle actin expression in repair of the canine meniscus. Wound Repair Regen 8:554–561

    Article  PubMed  CAS  Google Scholar 

  • Klint P, Claesson-Welsh L (1999) Signal transduction by fibroblast growth factor receptors. Front Biosci 4:D165–D177

    Article  PubMed  CAS  Google Scholar 

  • Knox S., Melrose J, Whitelock J (2001) Electrophoretic, biosensor and bioactivity analyses of perlecans of different cellular origins. Proteomics 1:1534–1541

    Article  PubMed  CAS  Google Scholar 

  • Knox S, Merry C, Stringer S, Melrose J, Whitelock J (2002) Not all perlecans are created equal : interactions with fibroblast growth factor-2 (FGF-2) and FGF receptors. J Biol Chem 277:14657–14665

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Fujimoto E, Deie M, Sumen Y, Ikuta Y, Ochi M (2004) Regional differences in the healing potential of the meniscus-an organ culture model to eliminate the influence of microvasculature and the synovium. Knee 11:271–278

    Article  PubMed  Google Scholar 

  • Levy IM, Torzilli PA, Fisch ID (1992) The contribution of the menisci to the stability of the knee. In: Mow VC, Arnoczky SP, Jackson DW (eds) Knee meniscus, basic and clinical foundations. Raven Press, NY, pp 107–116

    Google Scholar 

  • Lietman SA, Hobbs W, Inoue N, Reddi AH (2003) Effects of selected growth factors on porcine meniscus in chemically defined medium. Orthopedics 26:799–803

    PubMed  Google Scholar 

  • Little C, Smith S, Ghosh P, Bellenger C (1997) Histomorphological and immunohistochemical evaluation of joint changes in a model of osteoarthritis induced by lateral meniscectomy in sheep. J Rheumatol 24:2199–2209

    PubMed  CAS  Google Scholar 

  • McAlinden A, Dudhia J, Bolton MC, Lorenzo P, Heinegard D, Bayliss MT. (2001) Age-related changes in the synthesis and mRNA expression of decorin and aggrecan in human meniscus and articular cartilage. Osteoarthritis Cartilage 9:33–41

    Article  PubMed  CAS  Google Scholar 

  • McDevitt C, Webber R (1990) The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop 252:8–18

    PubMed  Google Scholar 

  • Meachim G (1976) The state of the knee meniscal fibrocartilage in Liverpool necrospies. J Pathol 119:167–173

    Article  PubMed  CAS  Google Scholar 

  • Meister K, Indelicato PA, Spanier S, Franklin J, Batts J (2004) Histology of the torn meniscus: a comparison of histologic differences in meniscal tissue between tears in anterior cruciate ligament-intact and anterior cruciate ligament-deficient knees. Am J Sports Med 32:1479–1483

    Article  PubMed  Google Scholar 

  • Melrose J, Smith S, Knox S, and Whitelock J (2002). Perlecan, the multi-domain proteoglycan of basement membrane is also a prominent pericellular component of hypertrophic chondrocytes of ovine vertebral growth plate and cartilaginous end plate cartilage. Histochem Cell Biol 118:269–280

    PubMed  CAS  Google Scholar 

  • Melrose J, Smith S, Ghosh P, Whitelock JW (2003) Perlecan the multi-domain heparan sulphate proteoglycan of basement membranes is also a prominent component of the cartilaginous primordia in the developing human foetal spine. J Histochem Cytochem 51:1331–1341

    PubMed  CAS  Google Scholar 

  • Melrose J, Smith S and Whitelock J (2004) Perlecan immunolocalises to perichondrial vessels and canals in human foetal cartilaginous primordia in early vascular and matrix remodelling events associated with diarthrodial-joint development. J Histochem Cytochem 52:1405–1413

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Smith S, Cake M, Read R, Whitelock J (2005) Perlecan displays variable spatial and temporal localisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem Cell Biol (in press)

  • Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193:161–178

    Article  PubMed  CAS  Google Scholar 

  • Miosge N, Simniok T, Sprysch P, Herken R (2003) The collagen type XVIII endostatin domain is co-localized with perlecan in basement membranes in vivo. J Histochem Cytochem 51:285–296

    PubMed  CAS  Google Scholar 

  • Mongiat M, Fu J, Oldershaw R, Greenhalgh R, Gown AM, Iozzo RV (2003a) Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J Biol Chem 278:17491–17499

    Article  PubMed  CAS  Google Scholar 

  • Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo R (2003b). Endorepellin, a novel inhibitor of angiogenesis derived from the C-terminus of perlecan. J Biol Chem 278:4238–4249

    Article  PubMed  CAS  Google Scholar 

  • Murdoch AD, Dodge GR, Cohen I, Tuan RS, Iozzo RV (1992) Primary structure of the human heparan sulphate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecule, and epidermal growth factor. J Biol Chem 267:8544–8557

    PubMed  CAS  Google Scholar 

  • Murdoch AD, Liu B, Schwarting R, Tuan RS, Iozzo RV (1994) Wide spread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in-situ hybridisation. J Histochem Cytochem 42:239–249

    PubMed  CAS  Google Scholar 

  • Naumann A, Dennis JE, Awadallah A, Carrino DA, Mansour JM, Kastenbauer E, Caplan AI (2002) Immunochemical and mechanical characterisation of cartilage subtypes in rabbit. J Histochem Cytochem 50:1049–1058

    PubMed  CAS  Google Scholar 

  • Nicole S, Davoine CS, Topaloglu H, Cattolico L, Barral D, Beighton P, Hamida CB, Hammouda H, Cruaud C, White PS, Samson D, Urtizberea JA, Lehmann-Horn F, Weissenbach J, Hentati F, Fontaine B (2000) Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nat Genet 26:480–483

    Article  PubMed  CAS  Google Scholar 

  • Nishida T, Kubota S, Fukunaga T, Kondo S, Yosimichi G, Nakanishi T, Takano-Yamamoto T, Takigaw M (2003) CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J Cell Physiol 196:265–275

    Article  PubMed  CAS  Google Scholar 

  • Noonan DM, Fulle A, Nalente P, Cai S, Horigan E, Sasaki M, Yamada Y, Hassell JR (1991) The complete sequence of perlecan, a basement membrane heparan sulphate proteoglycan reveals extensive similarity with laminin-A chain, low density lipoprotein receptor and the neural cell adhesion molecule. J Biol Chem 266:22939–22947

    PubMed  CAS  Google Scholar 

  • Olsen B (1999) Life without perlecan has its problems. J Cell Biol 147:909–911

    Article  PubMed  CAS  Google Scholar 

  • Papachristou G, Efstathopoulos N, Plessas S, Levidiotis C, Chronopoulos E, Sourlas J (2003) Isolated meniscal repair in the avascular area. Acta Orthop Belg 69:341–345

    PubMed  Google Scholar 

  • Peretti GM, Gill TJ, Xu JW, Randolph MA, Morse KR, Zaleske DJ.(2004) Cell-based therapy for meniscal repair: a large animal study. Am J Sports Med 32:146–158

    Article  PubMed  Google Scholar 

  • Peterson W, Tillmann B (1998) Collagenous fibril texture of the human knee joint menisci. Anal Embryol 197:317–24

    Article  Google Scholar 

  • Pyne SW (2002) Current progress in meniscal repair and postoperative rehabilitation. Curr Sports Med Rep 1:265–271

    Article  PubMed  Google Scholar 

  • Rijk PC, Tigchelaar-Gutter W, Bernoski FP, Van Noorden CJ (2004) Histologic changes in articular cartilage after medial meniscus replacement in rabbits. Arthroscopy 20:911–917

    PubMed  Google Scholar 

  • Shelbourne KD, Carr DR (2003) Meniscal repair compared with meniscectomy for bucket-handle medial meniscal tears in anterior cruciate ligament-reconstructed knees. Am J Sports Med 31:718–723

    PubMed  Google Scholar 

  • SundarRaj N, Fite D, Ledbetter S, Chakravarti S, Hassell JR (1995) Perlecan is a component of cartilage matrix and promotes chondrocyte attachment. J Cell Sci 108:2663–2672

    PubMed  CAS  Google Scholar 

  • Tesche F, Miosge N (2004) Perlecan in late stages of osteoarthritis of the human knee joint. Osteoarthritis Cartilage 12:852–862

    Article  PubMed  CAS  Google Scholar 

  • Tesche F, Miosge N (2005) New aspects of the pathogenesis of osteoarthritis: the role of fibroblast-like chondrocytes in late stages of the disease. Histol Histopathol 20:329–337

    PubMed  CAS  Google Scholar 

  • Tu H, Sasaki T, Snellman A, Göhring W, Pirilä P, Timpl R, Pihlajaniemi T (2002) The type XIII collagen ectodomain is a 150 nm rod and capable of binding to fibronectin, nidogen-2, perlecan, and heparin. J Biol Chem 277:23092–23099

    Article  PubMed  CAS  Google Scholar 

  • Tumia NS, Johnstone AJ (2004a) Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro. Am J Sports Med 32:915–920

    Article  PubMed  Google Scholar 

  • Tumia NS, Johnstone AJ (2004b) Regional regenerative potential of meniscal cartilage exposed to recombinant insulin-like growth factor-I in vitro. J Bone Joint Surg Br 86:1077–1081

    Article  PubMed  CAS  Google Scholar 

  • Van Mow VC, Ratcliffe A, Chern KY, Kelly MA (1992) Structure and Function Relationships of the menisci of the knee. In: Mow VC, Arnoczky SP, Jackson DW (eds) Knee meniscus, basic and clinical foundations. Raven Press, NY, pp 37–58

    Google Scholar 

  • Wildey GM, McDevitt C (1998) Matrix protein mRNA levels in canine meniscus in vitro. Arch Biochem Biophys 353:10–15

    Article  PubMed  CAS  Google Scholar 

  • Wildey GM, Billetz A, Matyas JR et al (2001) Absolute concentrations of mRNA for type I and type VI collagen in the canine meniscus in normal and ACL-deficient knee joints obtained by RNase protection assay. J Orthop Res 19:650–658

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Health and Medical Research Council (Project Grant No 211266) and by Research Grants from The Arthritis Foundation of Australia and Rebecca Cooper Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Melrose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melrose, J., Smith, S., Cake, M. et al. Comparative spatial and temporal localisation of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: an ageing study. Histochem Cell Biol 124, 225–235 (2005). https://doi.org/10.1007/s00418-005-0005-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0005-0

Keywords

Navigation