Skip to main content

Advertisement

Log in

Phenotypic differences between red pulp capillary and sinusoidal endothelia help localizing the open splenic circulation in humans

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The distribution of capillaries, sinuses and larger vessels was investigated by immunohistology in paraffin sections of 12 adult human spleens using a panel of antibodies. Double staining for CD34 and CD141 (thrombomodulin) revealed that capillary endothelia in the cords of the splenic red pulp and at the surface of follicles were CD34+CD141, while red pulp sinus endothelia had the phenotype CD34CD141+. Only in the direct vicinity of splenic follicles did sinus endothelial cells exhibit both antigens. Thus, splenic sinuses do not replace conventional capillaries, but exist in addition to such vessels. The endothelium in arterioles, venules and larger arteries and veins was uniformly CD34+CD141+. Anti-CD34 and anti-CD141 both additionally reacted with different types of splenic stromal cells. Differential staining of capillaries and sinuses may permit a three-dimensional reconstruction of serial sections to unequivocally delineate the “open” and “closed” splenic circulation in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABC:

avidin-biotinylated peroxidase complex

AP:

alkaline phosphatase

DAB:

diaminobenzidine

SMA:

smooth muscle alpha-actin

References

  • Barnhart MI, Baechler CA, Lusher JM (1976) Arteriovenous shunts in the human spleen. Am J Haematol 1:105–114

    Article  CAS  Google Scholar 

  • Boffa M-C (1996) Considering cellular thrombomodulin distribution and its modulating factors can facilitate the use of plasma thrombomodulin as a reliable endothelial marker? Haemostasis 26(suppl 4):233–243

    PubMed  CAS  Google Scholar 

  • Buckley PJ (1991) Phenotypic subpopulations of macrophages and dendritic cells in human spleen. Scanning Microsc 5:147–158

    PubMed  CAS  Google Scholar 

  • Buckley PJ, Dickson SA, Walker WS (1985) Human splenic sinusoidal lining cells express antigens associated with monocytes, macrophages, endothelial cells, and T lymphocytes. J Immunol 134:2310–2315

    PubMed  CAS  Google Scholar 

  • Drenckhahn D, Wagner J (1986) Stress fibres in the splenic sinus endothelium in situ: molecular structure, relationship to the extracellular matrix, and contractility. J Cell Biol 102:1738–1747

    Article  PubMed  CAS  Google Scholar 

  • Giorno R (1984) Unusual structure of human splenic sinusoids revealed by monoclonal antibodies. Histochemistry 81:505–507

    Article  PubMed  CAS  Google Scholar 

  • Jäger E (1929) Die Gefäßversorgung der Malpighischen Körperchen in der Milz. Zeitschr Zellforsch Mikr Anat 8:578–601

    Article  Google Scholar 

  • Kashimura M (1985) Labyrinthine structure of arterial terminals in the human spleen, with special reference to “closed circulation”. A scanning electron microscope study. Arch Histol Jpn 48:279–291

    PubMed  CAS  Google Scholar 

  • Kraal G (1992) Cells in the marginal zone of the spleen. Int Rev Cytol 132:31–74

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pomares L, Hanitsch LG, Stillion R, Keshav S, Gordon S (2005) Expression of mannose receptor and ligands for its cysteine-rich domain in venous sinuses of human spleen. Lab Invest 85:1238–1249

    Article  PubMed  CAS  Google Scholar 

  • Satodate R, Tanaka H, Sasou S, Sakuma T, Kaizuka H (1986) Scanning electron microscopical studies of the arterial terminals in the red pulp of the rat spleen. Anat Rec 215:214–216

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EE, MacDonald IC, Groom AC (1988) Microcirculatory pathways in normal human spleen, demonstrated by scanning electron microscopy of corrosion casts. Am J Anat 181:253–266

    Article  PubMed  CAS  Google Scholar 

  • Snook T (1950) A comparative study of the vascular arrangements in mammalian spleens. Am J Anat 87:31–77

    Article  PubMed  CAS  Google Scholar 

  • Snook T (1964) Studies on the perifollicular region of the rat’s spleen. Anat Rec 1148:149–159

    Article  Google Scholar 

  • Snook T (1975) The origin of the follicular capillaries in the human spleen. Am J Anat 144:113–117

    Article  PubMed  CAS  Google Scholar 

  • Steiniger B, Barth P (2000) Microanatomy and function of the spleen. Adv Anat Embryol 151:1–100

    Google Scholar 

  • Steiniger B, Barth P, Herbst B, Hartnell A, Crocker PR (1997) The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immunology 92:307–316

    Article  PubMed  CAS  Google Scholar 

  • Steiniger B, Hellinger A, Barth P (2001) The perifollicular and marginal zones of the human splenic white pulp: do fibroblasts guide lymphocyte immigration? Am J Pathol 159:501–512

    PubMed  CAS  Google Scholar 

  • Steiniger B, Rüttinger L, Barth PJ (2003) The three-dimensional structure of human splenic white pulp compartments. J Histochem Cytochem 51:655–663

    PubMed  CAS  Google Scholar 

  • Steiniger B, Timphus EM, Jacob R, Barth PJ (2005) CD27+ B cells in human lymphatic organs: re-evaluating the splenic marginal zone. Immunology 116:429–442

    PubMed  CAS  Google Scholar 

  • Steiniger B, Timphus EM, Barth PJ (2006) The splenic marginal zone in humans and rodents—an enigmatic compartment and its inhabitants. Histochem Cell Biol 126:641–648

    Article  PubMed  CAS  Google Scholar 

  • Steiniger B, Ulfig N, Riße M, Barth PJ (2007) Fetal and early post-natal development of the human spleen: from primordial arterial B cell lobules to a non-segmented organ. Histochem Cell Biol (in press) doi:10.1007/s00418-007-0296-4

  • Suzuki T, Furusato M, Takasaki S, Shimizu S, Hataba Y (1977) Stereoscopic scanning electron microscopy of the red pulp of dog spleen with special reference to the terminal structure of the cordal capillaries. Cell Tissue Res 182:441–453

    Article  PubMed  CAS  Google Scholar 

  • Takubo K, Miyamoto H, Imamura M, Tobe T (1986) Morphology of the human and dog spleen with special reference to intrasplenic microcirculation. Jpn J Surg 16:29–35

    Article  PubMed  CAS  Google Scholar 

  • Timens W, Poppema S (1985) Lymphocyte compartments in human spleen. An immunohistologic study in normal spleens and noninvolved spleens in Hodgkin’s disease. Am J Pathol 120:443–454

    PubMed  CAS  Google Scholar 

  • Weidenreich F (1901) Das Gefäßsystem der menschlichen Milz. Arch mikrosk Anat 58:247–376

    Google Scholar 

  • Weiss L, Powell R, Schiffman FJ (1985) Terminating arterial vessels in red pulp of human spleen: a transmission electron microscopic study. Experientia 41:233–242

    Article  PubMed  CAS  Google Scholar 

  • Van Krieken JHJM, te Velde J (1986) Immunohistology of the human spleen: an inventory of the localization of lymphocyte subpopulations. Histopathology 10:285–294

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant Ste 360/10-1 of the Deutsche Forschungsgemeinschaft. We thank Anja Seiler and Katrin Lampp for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birte Steiniger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiniger, B., Stachniss, V., Schwarzbach, H. et al. Phenotypic differences between red pulp capillary and sinusoidal endothelia help localizing the open splenic circulation in humans. Histochem Cell Biol 128, 391–398 (2007). https://doi.org/10.1007/s00418-007-0320-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0320-8

Keywords

Navigation