Skip to main content
Log in

DNA binding sites target nuclear NFATc1 to heterochromatin regions in adult skeletal muscle fibers

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

We have previously demonstrated that Ca2+/calcineurin-dependent dephosphorylation of the transcription factor nuclear factor of activated T cells subtype 1 (NFATc1) during repetitive skeletal muscle activity causes NFAT nuclear translocation and concentration in subnuclear NFAT foci. We now show that NFAT nuclear foci colocalize with heterochromatin regions of intense staining by DAPI or TO-PRO-3 that are present in the nucleus prior to NFATc1 nuclear entry. Nuclear NFATc1 also colocalizes with the heterochromatin markers trimethyl-histone H3 (Lys9) and heterochromatin protein 1α. Mutation of the NFATc1 DNA binding sites prevents entry and localization of NFATc1 in heterochromatin regions. However, fluorescence in situ hybridization shows that the NFAT-regulated genes for slow and fast myosin heavy chains are not localized within the heterochromatin regions. Fluorescence recovery after photobleaching shows that within a given nucleus, NFATc1 redistributes relatively rapidly (t 1/2 < 1 min) between NFAT foci. Nuclear export of an NFATc1 mutant not concentrated in NFAT foci is accelerated following nuclear entry during fiber activity, indicating buffering of free nuclear NFATc1 by NFATc1 within the NFAT foci. Taken together, our results suggest that NFAT foci serve as nuclear storage sites for NFATc1, allowing it to rapidly mobilize to other nuclear regions as required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37

    Article  CAS  PubMed  Google Scholar 

  • Beals CR, Clipstone NA, Ho SN, Crabtree GR (1997) Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev 11:824–834

    Article  CAS  PubMed  Google Scholar 

  • Berberich-Siebelt F, Berberich I, Andrulis M, Santner-Nanan B, Jha MK, Klein-Hessling S, Schimpl A, Serfling E (2006) SUMOylation interferes with CCAAT/enhancer-binding protein beta-mediated c-myc repression, but not IL-4 activation in T cells. J Immunol 176:4843–4851

    CAS  PubMed  Google Scholar 

  • Calabria E, Ciciliot S, Moretti I, Garcia M, Picard A, Dyar KA, Pallafacchina G, Tothova J, Schiaffino S, Murgia M (2009) NFAT isoforms control activity-dependent muscle fiber type specification. Proc Natl Acad Sci USA 106:13335–13340

    Article  CAS  PubMed  Google Scholar 

  • Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12:2499–2509

    Article  CAS  PubMed  Google Scholar 

  • Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST (2000) Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 14:2146–2160

    Article  CAS  PubMed  Google Scholar 

  • Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl):S67–S79

    Article  CAS  PubMed  Google Scholar 

  • DiFranco M, Neco P, Capote J, Meera P, Vergara JL (2006) Quantitative evaluation of mammalian skeletal muscle as a heterologous protein expression system. Protein Expr Purif 47:281–288

    Article  CAS  PubMed  Google Scholar 

  • Hennig R, Lomo T (1985) Firing patterns of motor units in normal rats. Nature 314:164–166

    Article  CAS  PubMed  Google Scholar 

  • Hoey T, Sun YL, Williamson K, Xu X (1995) Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 2:461–472

    Article  CAS  PubMed  Google Scholar 

  • Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232

    Article  CAS  PubMed  Google Scholar 

  • Jain J, Burgeon E, Badalian TM, Hogan PG, Rao A (1995) A similar DNA-binding motif in NFAT family proteins and the Rel homology region. J Biol Chem 270:4138–4145

    Article  CAS  PubMed  Google Scholar 

  • Klemm JD, Beals CR, Crabtree GR (1997) Rapid targeting of nuclear proteins to the cytoplasm. Curr Biol 7:638–644

    Article  CAS  PubMed  Google Scholar 

  • Kubis HP, Hanke N, Scheibe RJ, Meissner JD, Gros G (2003) Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. Am J Physiol Cell Physiol 285:C56–C63

    CAS  PubMed  Google Scholar 

  • Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Carroll SL, Klein MG, Schneider MF (1997) Calcium transients and calcium homeostasis in adult mouse fast-twitch skeletal muscle fibers in culture. Am J Physiol 272:C1919–C1927

    CAS  PubMed  Google Scholar 

  • Liu Y, Cseresnyés Z, Randall WR, Schneider MF (2001) Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. J Cell Biol 155:27–39

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wu B, Szary J, Kofoed EM, Schaufele F (2007) Functional sequestration of transcription factor activity by repetitive DNA. J Biol Chem 282:20868–20876

    Article  CAS  PubMed  Google Scholar 

  • Matamales M, Bertran-Gonzalez J, Salomon L, Degos B, Deniau JM, Valjent E, Herve D, Girault JA (2009) Striatal medium-size spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS ONE 4:e4770

    Article  PubMed  Google Scholar 

  • Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17:639–647

    Article  CAS  PubMed  Google Scholar 

  • McCullagh KJ, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, Kalhovde JM, Lømo T, Schiaffino S (2004) NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci USA 101:10590–10605

    Article  CAS  PubMed  Google Scholar 

  • Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol 180:39–50

    Article  CAS  PubMed  Google Scholar 

  • Meaburn KJ, Gudla PR, Khan S, Lockett SJ, Misteli T (2009) Disease-specific gene repositioning in breast cancer. J Cell Biol 187:801–812

    Article  CAS  PubMed  Google Scholar 

  • Meissner JD, Umeda PK, Chang KC, Gros G, Scheibe RJ (2007) Activation of the beta myosin heavy chain promoter by MEF-2D, MyoD, p300, and the calcineurin/NFATc1 pathway. J Cell Physiol 211:138–148

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2005) Concepts in nuclear architecture. BioEssays 27:477–487

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa H, Woo SK, Dahl SC, Handler JS, Kwon HM (1999) Tonicity-responsive enhancer binding protein, a Rel-like protein that stimulates transcription in response to hypertonicity. Proc Natl Acad Sci USA 96:2538–2542

    Article  CAS  PubMed  Google Scholar 

  • Moen PT Jr, Johnson CV, Byron M, Shopland LS, de la Serna IL, Imbalzano AN, Lawrence JB (2004) Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell 15:197–206

    Article  CAS  PubMed  Google Scholar 

  • Mu X, Brown LD, Liu Y, Schneider MF (2007) Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers. Physiol Genomics 30:300–312

    Article  CAS  PubMed  Google Scholar 

  • Nayak A, Glöckner-Pagel J, Vaeth M, Schumann JE, Buttmann M, Bopp T, Schmitt E, Serfling E, Berberich-Siebelt F (2009) Sumoylation of the transcription factor NFATc1 leads to its subnuclear relocalization and interleukin-2 repression by histone deacetylase. J Biol Chem 284:10935–10946

    Article  CAS  PubMed  Google Scholar 

  • Parsons SA, Wilkins BJ, Bueno OF, Molkentin JD (2003) Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol 23:4331–4343

    Article  CAS  PubMed  Google Scholar 

  • Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747

    Article  CAS  PubMed  Google Scholar 

  • Schnedl W, Breitenbach M, Mikelsaar AV, Stranzinger G (1977) Mithramycin and DIPI: a pair of fluorochromes specific for GC- and AT-rich DNA respectively. Hum Genet 36:299–305

    Article  CAS  PubMed  Google Scholar 

  • Shen T, Liu Y, Cseresnyés Z, Hawkins A, Randall WR, Schneider MF (2006) Activity- and calcineurin-independent nuclear shuttling of NFATc1, but not NFATc3, in adult skeletal muscle fibers. Mol Biol Cell 17:1570–1582

    Article  CAS  PubMed  Google Scholar 

  • Shen T, Cseresnyés Z, Liu Y, Randall WR, Schneider MF (2007) Regulation of the nuclear export of the transcription factor NFATc1 by protein kinases after slow fibre type electrical stimulation of adult mouse skeletal muscle fibres. J Physiol 579:535–551

    Article  CAS  PubMed  Google Scholar 

  • Sheridan CM, Heist EK, Beals CR, Crabtree GR, Gardner P (2002) Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J Biol Chem 277:48664–48676

    Article  CAS  PubMed  Google Scholar 

  • Smith KP, Moen PT Jr, Wydner KL, Coleman JR, Lawrence JB (1999) Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. J Cell Biol 144:617–629

    Article  CAS  PubMed  Google Scholar 

  • Terui Y, Saad N, Jia S, McKeon F, Yuan J (2004) Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J Biol Chem 279:28257–28265

    Article  CAS  PubMed  Google Scholar 

  • Tothova J, Blaauw B, Pallafacchina G, Rudolf R, Argentini C, Reggiani C, Schiaffino S (2006) NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. J Cell Sci 119:1604–16011

    Article  CAS  PubMed  Google Scholar 

  • Verger A, Perdomo J, Crossley M (2003) Modification with SUMO. A role in transcriptional regulation. EMBO Rep 4:137–142

    Article  CAS  PubMed  Google Scholar 

  • Vissel B, Choo KH (1989) Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics 5:407–414

    Article  CAS  PubMed  Google Scholar 

  • Wolfe SA, Zhou P, Dotsch V, Chen L, You A, Ho SN, Crabtree GR, Wagner G, Verdine GL (1997) Unusual Rel-like architecture in the DNA-binding domain of the transcription factor NFATc. Nature 385:172–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gerald R. Crabtree (Howard Hughes Medical Institute, Stanford, CA) for providing NFATc1 cDNAs, Drs. M. DiFranco and J.L. Vergara (University of California, Los Angeles) for advice on the intramuscular plasmid injection, and Drs. Tom Misteli and Karen J. Meaburn (National Cancer Institute, National Institutes of Health, Bethesda, MD) for advice on the method of fluorescence in situ hybridization. This work was supported by NIH grant R01-AR056477 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, T., Liu, Y., Contreras, M. et al. DNA binding sites target nuclear NFATc1 to heterochromatin regions in adult skeletal muscle fibers. Histochem Cell Biol 134, 387–402 (2010). https://doi.org/10.1007/s00418-010-0744-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0744-4

Keywords

Navigation