Skip to main content
Log in

Kidney-synthesized erythropoietin is the main source for the hypoxia-induced increase in plasma erythropoietin in adult humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Erythropoietin (EPO) is mainly synthesized within renal peritubular fibroblasts, and also other tissues such as the liver possess the ability. However, to what extent non-kidney produced EPO contributes to the hypoxia-induced increase in circulating EPO in adult humans remains unclear.

Methods

We aimed to quantify this by assessing the distribution of EPO glycoforms which are characterized by posttranslational glycosylation patterns specific to the synthesizing cell. The analysis was performed on samples obtained in seven healthy volunteers before, during and after 1 month of sojourn at 3,454 m altitude.

Results

Umbilical cord (UC) plasma served as control. As expected a peak (p < 0.05) in urine (2.3 ± 0.5-fold) and plasma (3.3 ± 0.5-fold) EPO was observed on day 1 of high-altitude exposure, and thereafter the concentration decreased for the urine sample obtained after 26 days at altitude, but remained elevated (p < 0.05) by 1.5 ± 0.2-fold above the initial sea level value for the plasma sample. The EPO glycoform heterogeneity, in the urine samples collected at altitude, did not differ from values at sea level, but were markedly lower (p < 0.05) than the mean percent migrated isoform (PMI) for the umbilical cord samples.

Conclusion

Our studies demonstrate (1) UC samples express a different glycoform distribution as compared to adult humans and hence illustrates the ability to synthesis EPO in non-kidney cells during fetal development (2) as expected hypoxia augments circulating EPO in adults and the predominant source here for remains being kidney derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EPO:

Erythropoietin

Glc-NAc:

N-acetylglucosamine

HA:

High altitude

MAIIA:

Membrane-assisted isoform immunoassay

PMI:

Percent migrated isoform

SL:

Sea level

WGA:

Wheat germ agglutinin

UC:

Umbilical cord

References

  • Abbrecht PH, Malvin RL (1966) Renal production of erythropoietin in the dog. Am J Physiol 210:237–242

    CAS  PubMed  Google Scholar 

  • Berglund B, Gennser M, ÖRnhagen H, ÖStberg C, Wide L (2002) Erythropoietin concentrations during 10 days of normobaric hypoxia under controlled environmental circumstances. Acta Physiol Scand 174:225–229

    Article  CAS  PubMed  Google Scholar 

  • Bernaudin M, Bellail A, Marti HH, Yvon A, Vivien D, Duchatelle I, Mackenzie ET, Petit E (2000) Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia 30:271–278

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt WM, Wiesener MS, Scigalla P, Chou J, Schmieder RE, Günzler V, Eckardt K-U (2010) Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol 21:2151–2156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dame C, Fahnenstich H, Freitag P, Hofmann D, Abdul-Nour T, Bartmann P, Fandrey J (1998) Erythropoietin mRNA expression in human fetal and neonatal tissue. Blood 92:3218–3225

    CAS  PubMed  Google Scholar 

  • Fried W (1972) The Liver as a source of extrarenal erythropoietin production. Blood 40:671–677

    CAS  PubMed  Google Scholar 

  • Haase VH (2010) Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol Renal Physiol 299:F1–F13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72:449–489

    CAS  PubMed  Google Scholar 

  • Kapitsinou PP, Liu Q, Unger TL, Rha J, Davidoff O, Keith B, Epstein JA, Moores SL, Erickson-Miller CL, Haase VH (2010) Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 116:3039–3048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lönnberg M, Lundby C (2013) Detection of EPO injections using a rapid lateral flow isoform test. Anal Bioanal Chem. doi:10.1007/s00216-013-6997-8

    PubMed  Google Scholar 

  • Lönnberg M, Drevin M, Carlsson J (2008) Ultra-sensitive immunochromatographic assay for quantitative determination of erythropoietin. J Immunol Methods 339:236–244

    Article  PubMed  Google Scholar 

  • Lönnberg M, Andrén M, Birgegård G, Drevin M, Garle M, Carlsson J (2012a) Rapid detection of erythropoiesis-stimulating agents in urine and serum. Anal Biochem 420:101–114

    Article  PubMed  Google Scholar 

  • Lönnberg M, Bondesson U, Cormant F, Garcia P, Bonnaire Y, Carlsson J, Popot M-A, Rollborn N, Råsbo K, Bailly-Chouriberry L (2012b) Detection of recombinant human EPO administered to horses using MAIIA lateral flow isoform test. Anal Bioanal Chem 403:1619–1628

    Article  PubMed  Google Scholar 

  • Lönnberg M, Garle M, Lönnberg L, Birgegård G (2013) Patients with anaemia can shift from kidney to liver production of erythropoietin as shown by glycoform analysis. J Pharm Biomed Anal 81–82:187–192

    Article  PubMed  Google Scholar 

  • Lundby C, Thomsen JJ, Boushel R, Koskolou M, Warberg J, Calbet JAL, Robach P (2007) Erythropoietin treatment elevates haemoglobin concentration by increasing red cell volume and depressing plasma volume. J Physiol 578:309–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masuda S, Okano M, Yamagishi K, Nagao M, Ueda M, Sasaki R (1994) A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J Biol Chem 269:19488–19493

    CAS  PubMed  Google Scholar 

  • Minamishima YA, Kaelin WG (2010) Reactivation of hepatic EPO synthesis in mice after PHD loss. Science 329:407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mirand EA, Murphy GP, Steeves RA, Weber HW, RF P (1968) Extra-renal production of erythropoietin in man. Acta Hemaat (Basel) 39:359

    Article  CAS  Google Scholar 

  • Mørkeberg J, Sharpe K, Karstoft K, Ashenden MJ (2013) Detection of microdoses of rhEPO with the MAIIA test. Scand J Med Sci Sports. doi:10.1111/sms.12049

  • Ohls RK (2002) Erythropoietin and hypoxia inducible factor-1 expression in the mid-trimester human fetus. Acta Paediatr Suppl 91:27–30

    Article  CAS  PubMed  Google Scholar 

  • Olsen NV, Aachmann-Andersen NJ, Oturai P, Andersen TM, Rasmussen AB, Hulston C, Holstein-Rathlou N-H, Robach P, Lundby C (2011) Recombinant human erythropoietin in humans down-regulates proximal renal tubular reabsorption and causes a fall in glomerular filtration rate. J Physiol 15:1273–1281

    Article  Google Scholar 

  • Rasmussen P, Nordsborg N, Taudorf S, Sørensen H, Berg RMG, Jacobs RA, Bailey DM, Olsen NV, Secher NH, Møller K, Lundby C (2012) Brain and skin do not contribute to the systemic rise in erythropoietin during acute hypoxia in humans. FASEB J 26:1831–1834

    Article  CAS  PubMed  Google Scholar 

  • Robach P, Cairo G, Gelfi C, Bernuzzi F, Pilegaard H, Vigano A, Santambrogio P, Cerretelli P, Calbet JAL, Moutereau S, Lundby C (2007) Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle. Blood 109:4724–4731

    Article  CAS  PubMed  Google Scholar 

  • Siebenmann C, Robach P, Jacobs RA, Rasmussen P, Nordsborg N, Diaz V, Christ A, Olsen NV, Maggiorini M, Lundby C (2012) “Live high-train low” using normobaric hypoxia: a double-blinded, placebo-controlled study. J Appl Physiol 112:106–117

    Article  PubMed  Google Scholar 

  • Weidemann A, Kerdiles YM, Knaup KX, Rafie CA, Boutin AT, Stockmann C, Takeda N, Scadeng M, Shih AY, Haase VH, Simon MC, Kleinfeld D, Johnson RS (2009) The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. J Clin Invest 119:3373–3383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wide L, Bengtsson C (1990) Molecular charge heterogeneity of human serum erythropoietin. Br J Haematol 76:121–127

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare not to have any conflict of interest with regard to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Lundby.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundby, AK.M., Keiser, S., Siebenmann, C. et al. Kidney-synthesized erythropoietin is the main source for the hypoxia-induced increase in plasma erythropoietin in adult humans. Eur J Appl Physiol 114, 1107–1111 (2014). https://doi.org/10.1007/s00421-014-2844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2844-7

Keywords

Navigation