Skip to main content
Log in

Self-organization in the olfactory system: one shot odor recognition in insects

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abarbanel HDI, Huerta R, Rabinovich MI. (2002) Dynamical model of longt-term synaptic plasticity. P Natl Acad Sci USA. 99:10132–10136

    Article  CAS  Google Scholar 

  • Barth M, Heisenberg M (1997) Vision affects mushroom bodies of Drosophila melanogaster. Learn Mem 4:219–229

    Article  PubMed  CAS  Google Scholar 

  • Brody CD, Hopfield JJ (2003) Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron 37:843–852

    Article  PubMed  CAS  Google Scholar 

  • Cazelles B, Courbage M, Rabinovich M (2001) Anti-phase regularization of coupled chaotic maps modelling bursting neurons. Europhys Lett 56:504–509

    Article  CAS  Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297

    Google Scholar 

  • Cover T (1965) Geometric and statistical properties of systems of linear in-equalities with applications in pattern recognition. IEEE T Electron Comput 14:326

    Article  Google Scholar 

  • de Belle JS, Heisenberg M (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263:692–695

    Article  PubMed  Google Scholar 

  • Ehmer B, Gronenberg W (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451:362–373

    Article  PubMed  Google Scholar 

  • Ermentrout B, Wang JW, Flores J, Gelperin A (2001) Model for olfactory discrimination and learning in limax procerebrum incorporating oscillatory dynamics and wave propagation. J Neurophysiol 85:1444–1452

    PubMed  CAS  Google Scholar 

  • Friedrich RW, Laurent G (2001) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291:889–894

    Article  PubMed  CAS  Google Scholar 

  • Galizia CG, Küttner A, Joerges J, Menzel R (2000) Odour representation in honeybee olfactory glomeruli shows slow temporal dynamics: an optical recording study using voltage-sensitive dyes. J Insect Physiol 46:877–886

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sanchez M, Huerta R (2003) Design parameters of the fan-out phase of sensory systems. J Comput Neurosci 15:5–17

    Article  PubMed  Google Scholar 

  • Gelperin A (1999) Oscillatory dynamics and information processing in olfactory systems. Exp Biol 202:1855–1864

    Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking Neuron Models. Cambridge University Press, London

    Google Scholar 

  • Gerstner W, Ritz RR, van Hemmen JL (1993) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol Cyber 69:503–515

    Article  CAS  Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2:1–30

    Article  PubMed  CAS  Google Scholar 

  • Hendin O, Horn D, Tsodyks MV (1998) Associative memory and segmentation in an oscillatory neural model of the olfactory bulb. J Comput Neurosci 5:157–169

    Article  PubMed  CAS  Google Scholar 

  • Hosler JS, Buxton KL, Smith BH (2000) Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honeybee antennal lobes. Behav Neurosci 114:514–525

    Article  PubMed  CAS  Google Scholar 

  • Huerta R, Nowotny T, Garcia-Sanchez M, Abarbanel HDI, Rabinovich MI (2004) Learning classification in the olfactory system of insects. Neural Comput 16:1601–1640

    Article  PubMed  Google Scholar 

  • Ikeno H, Usui S (1999) Mathematical description of ionic currents of the kenyon cell in the mushroom body of honeybee. Neuro-Comput 26–27:177–184

    Google Scholar 

  • Joerges J, Küttner A, Galizia CG, Menzel R (1997) Representations of odour mixtures visualized in the honeybee brain. Nature 387:285–288

    Article  CAS  Google Scholar 

  • Kauer J (1974) Response patterns of amphibian olfactory bulb neurons to odor stimulation. J Physiol Lond 243:695–715

    PubMed  CAS  Google Scholar 

  • Komiyama T, Johnson WA, Luo L, Jefferis GSXE (2003) From lineage to wiring specificity: POU domain transcription factors control precise connections of Drosophila olfactory projection neurons. Cell 112:157–167

    Article  PubMed  CAS  Google Scholar 

  • Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Abarbanel HDI (2001) Odor encoding as an active, dynamical process: Experiments, computation, and theory. Annu Rev Neurosci 24:263–297

    Article  PubMed  CAS  Google Scholar 

  • Laurent G, Wehr M, Davidowitz H (1996) Temporal representations of odors in an olfactory network. J Neurosci 16:3837–3847

    PubMed  CAS  Google Scholar 

  • Li Z, Hertz J (2000) Odour recognition and segmentation by a model olfactory bulb and cortex. Network: Comput Nural Syst 11:83–102

    Article  CAS  Google Scholar 

  • Maas W, Bishop C (1999) Pulsed Neural Networks. MIT, USA

    Google Scholar 

  • Malinov R, Miller JP (1986) Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature 320:529–530

    Article  PubMed  Google Scholar 

  • Marin EC, Jefferis GS, Komiyama T, Zhu H, Luo L (2002) Representation of the glomerular olfactory map in the Drosophila brain. Cell 109:243–255

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts P (2001) How smell develops. Nat Neurosci 4:1192–1198

    Article  PubMed  CAS  Google Scholar 

  • Nowotny T, Rabinovich MI, Huerta R, Abarbanel HDI (2003) Decoding temporal information through slow lateral excitation in the olfactory system of insects. J Comput Neurosci 15:271–281

    Article  PubMed  Google Scholar 

  • O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall, avoiding a trade-off. Hippocampus 4:661–682

    Article  PubMed  CAS  Google Scholar 

  • Pelz C, Jander J, Rosenboom H, Hammer M, Menzel R (1999) I {A in Kenyon cells of the mushroom body of honeybees resembles shaker currents: Kinetics, modulation by K+, and simulation. J Neurophysiol 81:1749–1759

    PubMed  CAS  Google Scholar 

  • Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365

    Article  PubMed  CAS  Google Scholar 

  • Bi G-Q, Poo M-m (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    PubMed  CAS  Google Scholar 

  • Bi G-Q, Poo M-m (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139–166

    Article  PubMed  CAS  Google Scholar 

  • Rulkov NF (2002) Modeling of spiking-bursting behavior using two-dimensional map. Phys Rev E 65:041922

    Article  CAS  Google Scholar 

  • Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117

    PubMed  Google Scholar 

  • Sachse S, Rappert A, Galizia CG (1999) The spatial representation of chemical structures in the antennal lobes of honeybees: steps toward the olfactory code. Eur J Neurosci 11:3970–3982

    Article  PubMed  CAS  Google Scholar 

  • Sommer FT, Wennekers T (2001) Associative memory in networks of spiking neurons. Neural Networks 14:825–834

    Article  PubMed  CAS  Google Scholar 

  • Stopfer M, Bhagavan S, Smith B, Laurent G (1997) Impaired odor discrimination on desynchronization of odor-encoding neural assemblies. Nature 390:70–74

    Article  PubMed  CAS  Google Scholar 

  • Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an olfactory system. Neuron 39:991–1004

    Article  PubMed  CAS  Google Scholar 

  • Tanaka NK, Awasaki T, Shimada T, Ito K (2004) Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14:449–457

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Miles R (1991) Neural networks of the hippocampus. Cambridge University Press, New York

    Google Scholar 

  • Treloar HB, Feinstein P, Mombaerts P, Greer CA (2002) Specificity of glomerular targeting by olfactory sensory axons. J Neurosci 22:2469–2477

    PubMed  CAS  Google Scholar 

  • Uchida N, Mainen ZF (2003) Speed and accuracy of olfactory discrimination in the rat. Nat Neurosci 6:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Vosshall LB (2001) The molecular logic of olfaction in Drosophila. Chem Senses 26:207–213

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wright NJD, Guo HF, Xie Z, Svoboda K, Malinow R, Smith DP, Zhong Y (2001) Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron 29:267–276

    Article  PubMed  CAS  Google Scholar 

  • Wehr M, Laurent G (1996) Odor encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384:162–166

    Article  PubMed  CAS  Google Scholar 

  • White J, Dickinson TA, Walt DR, Kauer JS (1998) An olfactory neuronal network for vapor recognition in an artificial nose. Biol Cyber 78:245–251

    Article  CAS  Google Scholar 

  • Whitehead A, Rabinovich MI, Huerta R, Zhigulin VP, Abarbanel HDI (2003) Dynamical synaptic plasticity: a model and connection to some experiments. Biol Cyber 88:229–235

    Article  CAS  Google Scholar 

  • Wilson DA (2003) Rapid, experience-induced enhancement in odorant discrimination by anterior piriform cortex neurons. J Neurophysiol 90:65–72

    Article  PubMed  Google Scholar 

  • Wüstenberg DG, Boytcheva M, Grünewald B, Byrne JH, Menzel R, Baxter DA (2004) Current- and voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee. J Neurophysiol 92: 2589–2603

    Article  PubMed  Google Scholar 

  • Zhu H, Luo L (2004) Diverse functions of n-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron 42:63–75

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowotny, T., Huerta, R., Abarbanel, H.D.I. et al. Self-organization in the olfactory system: one shot odor recognition in insects. Biol Cybern 93, 436–446 (2005). https://doi.org/10.1007/s00422-005-0019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0019-7

Keywords

Navigation