Skip to main content

Advertisement

Log in

Cell assemblies in the cerebral cortex

  • Prospects
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Donald Hebb’s concept of cell assemblies is a physiology-based idea for a distributed neural representation of behaviorally relevant objects, concepts, or constellations. In the late 70s Valentino Braitenberg started the endeavor to spell out the hypothesis that the cerebral cortex is the structure where cell assemblies are formed, maintained and used, in terms of neuroanatomy (which was his main concern) and also neurophysiology. This endeavor has been carried on over the last 30 years corroborating most of his findings and interpretations. This paper summarizes the present state of cell assembly theory, realized in a network of associative memories, and of the anatomical evidence for its location in the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeles M (1982) Local cortical circuits: an electrophysiological study. Springer, Berlin

    Google Scholar 

  • Abeles M (1988) Neural codes for higher brain functions. In: Markowitsch HJ (ed) Information processing by the brain. Hans Huber Pub, Toronto, pp 225–238

    Google Scholar 

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, Cambridge

    Google Scholar 

  • Abeles M, Bergman H, Gat I, Meilijson I, Seidemann E, Tishby N, Vaadia E (1995) Cortical activity flips among quasi stationary states. Proc Natl Acad Sci USA 92:8616–8620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aertsen A (ed) (1993) Brain theory. Spatio-temporal aspects of brain function, Elsevier, Amsterdam

  • Amir Y, Harel M, Malach R (1993) Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex. J Comp Neurol 334:19–46

    CAS  PubMed  Google Scholar 

  • Amit D (1989) Modeling brain function: the world of attractor neural networks. Cambridge University Press, Cambridge

    Google Scholar 

  • Anderson JR et al (2004) An integrated theory of mind. Psychol Rev 111:1036–1060

    PubMed  Google Scholar 

  • Bär TH (1977) Wirkung chronischer hypoxie auf die postnatale synaptogenese im occipitalcortex der ratte. Verh Anat Ges 71:915– 924

    Google Scholar 

  • Baillarger JGF (1840) Recherches sur la structure de la couche corticale des circonvolutions du cerveau. Mém de l’Acad royale médécine 8:149–183

    Google Scholar 

  • Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8:1185–1202

    CAS  PubMed  Google Scholar 

  • Bakker R, Wachtler T, Diesmann M (2012) CoCoMac 2.0 and the future of tract-tracing databases. Front Neuroinf 6:30

    Google Scholar 

  • Bi G, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

    Google Scholar 

  • Bienenstock E (1995) A model of neocortex. Netw Comput Neural Syst 6:179–224

    Google Scholar 

  • Binzegger T, Douglas RJ, Martin KAC (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24(39): 8441–8453

    Google Scholar 

  • Binzegger T, Douglas RJ, Nartin KAC (2007) Stereotypical bouton clustering of individual neurons in cat primary visual cortex. J Neurosci 27(45):12242–12254

    CAS  PubMed  Google Scholar 

  • Blakemore C, Cooper GF (1971) Modification of the visual cortex by experience. Brain Res 31:366

    CAS  PubMed  Google Scholar 

  • Bock NA, Hashim E, Janik R, Konyer NB, Weiss M, Stanisz GJ, Turner R, Geyer S (2013) Optimizing T1-weighted imaging of cortical myelin content at 3.0 T. NeuroImage 65:1–12

    PubMed  Google Scholar 

  • Bouchain DA, Palm G (2012) Neural coding in graphs of bidirectional associative memories. Brain Res 1434:189–199. doi:10.1016/j.brainres.2011.09.050

    CAS  PubMed  Google Scholar 

  • Braitenberg V (1962) A note on myeloarchitectonics. J Comp Neurol 118:141–156

    CAS  PubMed  Google Scholar 

  • Braitenberg V (1978) Cell assemblies in the cerebral cortex. In: Heim R, Palm G (eds) Proceedings Symposium on theoretical approaches to complex systems 1977. Lecture notes in biomathematics 21, Springer, Berlin, pp 171–188

  • Braitenberg V, Schüz A (1991) Cortex: statistics and geometry of neuronal connectivity. Springer, Berlin

    Google Scholar 

  • Braitenberg V, Schüz A (1998) Cortex: statistics and geometry. Revised edition of “Anatomy of the cortex: statistics and geometry” (1991) Springer, Berlin

  • Brodal P (2010) The central nervous system. Oxford University Press, Oxford, Structure and function

    Google Scholar 

  • Burns B, Webb AC (1976) The spontaneous activity of neurones in the cat’s cerebral cortex. Proc R Soc London B 194:211–223

    CAS  Google Scholar 

  • Carporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46

    Google Scholar 

  • Cauller L (1995) Layer I of primary sensory neocortex: where top–down converges upon bottom–up. Behav Brain Res 71:163–170

    CAS  PubMed  Google Scholar 

  • Clopath C, Busing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature Neurosci 13(3):344–352

    CAS  PubMed  Google Scholar 

  • Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287

    CAS  PubMed  Google Scholar 

  • Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory neurons and pyramidal neurons. Nat Neurosci 3(7):701–707

    CAS  PubMed  Google Scholar 

  • DeFelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316

    PubMed  Google Scholar 

  • Edelman GM, Tononi G (2000) A Universe of consciousness. How matter becomes imagination. Basic Books, New York

    Google Scholar 

  • Eliasmith Ch (2013) How to build a brain: a neural architecture for biological cognition. Oxford University Press, New York

    Google Scholar 

  • Evans EF (1968) Upper and lower levels of the auditory system: a contrast of structure and function. In: Caianiello ER (ed) Neural networks. Springer, Berlin, pp 24–33

    Google Scholar 

  • Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438

    CAS  PubMed  Google Scholar 

  • Gennari F (1782) De peculiari structura cerebri nonnullisque ejus morbis. Parma

  • George D, Hawkins J (2009) Towards a mathematical theory of cortical micro-circuits. PLoS Comput Biol 5(10)

  • Gerstner W, Ritz R, van Hemmen JL (1993) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol Cybern 69:503–515

    CAS  PubMed  Google Scholar 

  • Girard P, Hupe JM, Bullier J (2001) Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J Neurophysiol 85:1328–1331

    CAS  PubMed  Google Scholar 

  • Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183:1592–1593

    CAS  PubMed  Google Scholar 

  • Grossberg S (1976a) Adaptive pattern classification and universal recording: I. Parallel development and coding of neural feature detectors. Biol Cybern 23:121–134

    CAS  PubMed  Google Scholar 

  • Grossberg S (1976b) Adaptive pattern classification and universal recording: II. Feedback, expectation, olfaction, and illusions. Biol Cybern 23:187–202

    CAS  PubMed  Google Scholar 

  • Grossberg S (1982) Studies of mind and brain. Reidel, Boston

    Google Scholar 

  • Grossberg S (1999) How does the cerebral cortex work? learning, attention and grouping by the laminar cirscuits of visual cortex. Spat Vis 12:163–186

    CAS  PubMed  Google Scholar 

  • Hauser F, Palm G, Bouchain D (2009) Coexistence of cell assemblies and STDP. In: Polycerpou Ch, Panayiotou G, Ellinas G (eds) Artificial neural networks - ICANN 2009, Part I. LNCS 5768. Springer, Berlin, pp 191–197

    Google Scholar 

  • Hauser F, Bouchain D, Palm G (2010) Simple constraints for zero-lag synchronous oscillations under STDP. In: Diamantaras K, Duch W, Iliadis LS (eds). ICANN 2010, Part I. LNCS 6352, Springer, Berlin, 311–316

  • Hauser F (2012) Formation and stability of spiking cell assemblies with spike-timing-dependent synaptic plasticity. Dissertation, University of Ulm

  • Hawkins J, Blakeslee S (2004) On intelligence. Times Books, Henry Holt and Company, New York

    Google Scholar 

  • Hebb DO (1949) The organization of behaviour. Wiley, New York

    Google Scholar 

  • Hecht-Nielsen R (2007) Confabulation theory. The mechanism of thought. Springer, Berlin

    Google Scholar 

  • Hellwig B (1993) How the myelin picture of the human cortex can be computed from cytoarchitectural data. A bridge between von economo and vogt. J Hirnforsch 34:387–402

    CAS  PubMed  Google Scholar 

  • Herz A, Creutzfeldt O, Fuster J (1964) Statistische eigenschaften der neuronaktivität im ascendierenden visuellen system. Kybernetik 2:61–71

    CAS  PubMed  Google Scholar 

  • Hirsch HVB, Spinelli DN (1971) Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp Brain Res 13:1–43

    Google Scholar 

  • Hopcroft JE, Ullman JD (1979) Introducion to automata theory, languages and computation. Addison-Wesley, Reading

    Google Scholar 

  • Houser CR, Vaughan JE, Hendry SHC, Jones EG, Peters A (1984) GABA neurons in the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral Cortex, vol 2., Functional properties of cortical cellsPlenum Press New York, London, pp 63–89

    Google Scholar 

  • Hubel DH, Wiesel TN (1959) Receptive fields of single neurons in the cat’s striate cortex. J Physiol 148:574–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28:1041– 1059

    Google Scholar 

  • Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 158:295–306

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Ferrier lecture. Proc R Soc Lond B 198:1–59

    CAS  PubMed  Google Scholar 

  • Humble J, Denham S, Wennekers Th (2012) Spatio-temporal pattern recognizers using spiking neurons and spike-timing-dependent plasticity. Front Comput Neurosci 6(84). doi:10.3389/fncom.2012.00084

  • Huyck CR, Passmore PJ (2013) A review of cell assemblies. Biol Cybern. doi:10.1007/s00422-013-0555-5

    PubMed  Google Scholar 

  • Izhikevich E (2006) Polychronization: computation with spikes. Neural Comput 18:245–282

    PubMed  Google Scholar 

  • Izhikevich EM, Hoppensteadt FC (2009) Polychronous wavefront computations. Int J of Bifurcation and Chaos 19(5):1733–1739

    Google Scholar 

  • Jones EG (1985) The thalamus. Plenum Press, New York

    Google Scholar 

  • Kampa BM, Stuart GJ (2006) Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 26(28):7424–7432

    CAS  PubMed  Google Scholar 

  • Kara Kayikci Z, Palm G (2008) Word recognition and incremental learning based on neural associative memories and hidden Markov models. In: Proceedings 16th europe symposium on artificial neural networks, pp 119–124

  • Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425:954–956

    CAS  PubMed  Google Scholar 

  • Kerr JND, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev 9:195–205

    CAS  Google Scholar 

  • Kiefer M, Pulvermüller F (2012) Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48:805–825

    PubMed  Google Scholar 

  • Kleene SC (1956) Representation of events in nerve nets and finite automata. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 3–42

    Google Scholar 

  • Knoblauch A, Palm G (2001) Pattern separation and synchronization in spiking associative memories and visual areas. Neural Netw 14:763–780

    CAS  PubMed  Google Scholar 

  • Knoblauch A, Palm G (2002a) Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback. Biol Cybern 87:151–167

    PubMed  Google Scholar 

  • Knoblauch A, Palm G (2002b) Scene segmentation by spike synchronization in reciprocally connected visual areas. II. Global assemblies and synchronization on a larger space and time scales. Biol Cybern 87:168–184

    PubMed  Google Scholar 

  • Knoblauch A, Sommer F (2003) Synaptic plasticity, conduction delays, and inter-areal phase relations of spike activity in a model of reciprocally connected areas. Neurocomputing 52–54:301–306

    Google Scholar 

  • Knoblauch A, Sommer F (2004) Spike-timing-dependent synaptic plasticity can form “zero lag” links for cortical oscillations. Neurocomputing 58–60:185–190

    Google Scholar 

  • Knoblauch A, Fay R, Kaufmann U, Markert H, Palm G (2004) Associating words to visually recognized objects. In: Coradeschi S, Saffiotti A (eds.) Anchoring symbols to sensor data. Papers from the AAAI Workshop. Technical Report WS-04-03, AAAI Press, Menlo Park, California, pp 10–16

  • Knoblauch A, Palm G (2005) What is signal and what is noise in the brain? Biosystems 79(1–3):83–90

    PubMed  Google Scholar 

  • Knoblauch A, Markert, H, Palm G (2005a): An associative cortical model of language understanding and action planning. In: Mira J, Alvarez JR (eds.) Artificial Intelligence and knowledge engineering applications: A bioinspired approach. Lecture notes in computer science, LNCS 3562, Springer, Berlin, pp 405–414

  • Knoblauch A, Markert H, Palm G (2005b) An associative model of cortical language and action processing. In: Cangelosi A, Bugmann G, Borisyuk R (eds) Modeling language, cognition and action. Proceedings of 9th neural computation and psycholog workshop NCPW9, World Scientific, pp 79–83

  • Knoblauch A, Kupper R, Gewaltig MO, Körner U, Körner E (2007) A cell assembly based model for the cortical microcircuitry. Neurocomputing 70:1838–1842

    Google Scholar 

  • Knoblauch A, Palm G, Sommer FT (2010) Memory capacities for synaptic and structural plasticity. Neural Comput 22(2):289– 341

    Google Scholar 

  • Knoblauch A (2011) Neural associative memory with optimal Bayesian learning. Neural Computation 23:1393–1451

    PubMed  Google Scholar 

  • Knoblauch A, Hauser F, Gewaltig M, Körner E, Palm G (2012) Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony? Front Comput Neurosci 6, article 55. doi:10.3389/fncom.2012.00055.

  • Kötter R (2004) Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics 2:127–144

    PubMed  Google Scholar 

  • Kozloski J, Cecchi G (2008) Topological effects of synaptic spike timing-dependent plasticity. http://arxiv.org/abs/0810.0029

  • Kozloski J, Cecchi G (2010) A theory of loop formation and elimination by spike timing-dependent plasticity. Frontiers in Neural Circuits 4(7):1–11

    Google Scholar 

  • Krone G, Mallot H, Palm G, Schüz A (1986) Spatio-temporal receptive fields: a dynamical model derived from cortical architectonics. Proc R Soc London B 226:421–444

    CAS  Google Scholar 

  • Lansner A (2009) Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. J TINS 32(3):178–186. doi:10.1016/j.tins.2008.12.002

    CAS  Google Scholar 

  • Legéndy CR (1967) On the scheme by which the human brain stores Information. Math Biosci 1:55

    Google Scholar 

  • Legéndy CR (1975) Three principles of brain function and structure. Int J Neursci 6:237

    Google Scholar 

  • Levitt J, Lund J (2002) Intrinsic connections in mammalian cerebral cortex. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor & Francis, London, pp 133–154

    Google Scholar 

  • Levy N, Horn D, Meilijson I, Ruppin E (2001) Distributed synchrony in a cell assembly of spiking neurons. Neural Netw 14:815–824

    CAS  PubMed  Google Scholar 

  • Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–387. doi:10.1038/nature11028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lubenov E, Siapas A (2008) Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58:118–131

    CAS  PubMed  Google Scholar 

  • Markert H, Knoblauch A, Palm G (2005) Detecting sequences and understanding language with neural associative memories and cell assemblies. In: Wermter S, Palm G, Elshaw M (eds) Biomimetic neural learning for intelligent robots. LNAI 3575, Springer, Berlin, pp 107–117

  • Markert H, Palm G (2006) An approach to language understanding and contextual disambiguation in human-robot interaction. In: Proc. ECAI International Workshop on Neural-Symbolic Learningand Reasoning (NeSy 2006), pp 23–35.

  • Markert H, Knoblauch A, Palm G (2007) Modelling of syntactical processing in the cortex. BioSystems 89:300–315

    PubMed  Google Scholar 

  • Markert H, Kayikci ZK, Palm G (2008) Sentence understanding and learning of new words with large-scale neural networks. In: Prevost L, Marinai S, Schwenker F (eds) Artificial Neural Networks in Pattern Recognition (ANNPR 2008). LNAI 5064. Springer Berlin, Heidelberg, pp 217–227

    Google Scholar 

  • Markert H, Kaufmann U, Palm G (2009) Neural associative memories for the integration of language, vision and action in an autonomous agent. Neural Netw 22:134–143

    CAS  PubMed  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakman B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    CAS  PubMed  Google Scholar 

  • Marr D (1969) A Theory of cerebellar cortex. J Physiol 202:437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marr D (1970) A theory of cerebellar neocortex. Proc R Soc London Ser B 176:161

    CAS  Google Scholar 

  • Marr D (1971) Simple memory. Philos Trans R Soc London Ser B 262:23

    CAS  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115

    Google Scholar 

  • Miles R, Wong RKS (1986) Excitatory synaptic interactions between CA3 neurones in the Guinea-pig hippocampus. J Physiol 373:397–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller R (1996) Cortico-thalamic interplay and the security of operation of neural assemblies and temporal chains in the cerebral cortex. Biol Cybern 75:263–275

    CAS  PubMed  Google Scholar 

  • Miller R (2000) Time and the brain. Taylor and Francis.

  • Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437–1467

    PubMed  Google Scholar 

  • Nieuwenhuys R (2013) The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 218:303–352

    PubMed  Google Scholar 

  • Palm G (1980) On associative memory. Biol Cybern 36:19–31

    CAS  PubMed  Google Scholar 

  • Palm G (1981) Towards a theory of cell assemblies. Biol Cybern 39:181–194

    CAS  PubMed  Google Scholar 

  • Palm G (1982a) Neural assemblies. An alternative approach to artificial intelligence. Springer, Berlin

    Google Scholar 

  • Palm G (1982b) Rules for synaptic changes and their relevance for the storage of information in the brain. In: Trappl R (ed) Cybernetics and systems research. North-Holland Publishing Company, Amsterdam

  • Palm G, Aertsen A (eds) (1986) Brain theory. Springer, Berlin

  • Palm G (1987a) On associative memories. In: Caianiello ER (ed) Physics of cognitive processes. World Scientific Publishers, Singapore, pp 380–422

    Google Scholar 

  • Palm G (1987b) Associative memory and threshold control in neural networks. In: Casti JL, Karlqvist A (eds) Real brains -artificial minds. North-Holland, Amsterdam

    Google Scholar 

  • Palm G (1990a) Cell assemblies as a guideline for brain research. Concepts Neurosci 1:133–148

    Google Scholar 

  • Palm G (1990b) Local learning rules and sparse coding in neural networks. In: Eckmiller R (ed) Advanced neural computers. North-Holland, Amsterdam

    Google Scholar 

  • Palm G, Sommer FT (1992) Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory states. Network 3:177–186

    Google Scholar 

  • Palm G (1993a) On the internal structure of cell assemblies. In: Aersten A (ed) Brain theory. Elsevier, Amsterdam, pp 261–270

    Google Scholar 

  • Palm G (1993b) Cell assemblies, coherence and cortico-hippocampal interplay. Special Issue Nitsch R, Ohm TG (eds), Hippocampus 3(1):219–225

  • Palm G, Schwenker F, Sommer F (1994) Associative memory networks and sparse similarity preserving codes. In: Cherkassky V, Friedman JH, Wechsler H (eds) From statistics to neural networks: theory and pattern recognition applications. NATO-ASI Series F. Springer, Berlin, pp 283–302

    Google Scholar 

  • Palm G (2013) Neural associative memories and sparse coding. Neural Netw 37:165–171. doi:10.1016/j.neunet.2012.08.013

    PubMed  Google Scholar 

  • Peters A, Feldman ML (1976) The projection of the lateral geniculate nucleus to area I. General description. J Neurocytol 5: 63–84

    Google Scholar 

  • Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26(38):9673–9682

    CAS  PubMed  Google Scholar 

  • Picado-Muino D, Borgelt Ch, Berger D, Gerstein G, Grün S (2013) Finding neural assemblies with frequent item set mining. Front Neuroinf 7(9)10.3389/fninf.2013.00009

  • Poort J, Raudies F, Wanning A, Lamme VAF, Neumann H, Roelfsema PR (2012) Neuron 75:143–156. doi:10.1016/j.neuron.2012.04.032

    CAS  PubMed  Google Scholar 

  • Potjans TC, Diesmann M (2012) The cell-type specific microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral Cortex. doi:10.1093/cercor/bhs358

    PubMed Central  PubMed  Google Scholar 

  • Pulvermüller F (2002) The neuroscience of language. On brain circuits of words and serial order. Cambridge University Press, Cambridge

  • Rao RP., Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature

  • Rao RP (2005) Hierarchical Bayesian inference in networks of spiking neurons. In: Saul IK, Weiss Y, Bottou L (eds) Advances in neural information processing systems.17. MIT Press, Cambridge

    Google Scholar 

  • Raudies F, Neumann H (2010) A neural model of the temporal dynamics of figure-ground segregation in motion perception. Neural Netw 23:160–176. doi:10.1016/j.neunet.2009.10.005

    PubMed  Google Scholar 

  • Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD (2010) The asynchronous state in cortical circuits. Science 327:587–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rockland KS (2004) Feedback connections: splitting the arrow. In: Kaas J, Collins EC (eds) The primate visual system. CRC Press, Boca Raton, pp 387–405

    Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    CAS  PubMed  Google Scholar 

  • Rockland KS, Virga A (1989) Terminal arbors of individual “feedback” axons projecting from area V2 to V1 in the macaque monkey: a study using immunohistochemistry of anterogradely transported phaseolus vulgaris-leucoagglutinin. J Comp Neurol 285(1):54–72

    CAS  PubMed  Google Scholar 

  • Russel SJ, Narvig P (2003) Artificial intelligence: a modern approach. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Scannell JW, Blakemore C, Young MP (1995) Analysis of connectivity in the cat cerebral cortex. J Neurosci 15(2):1463–1483

    CAS  PubMed  Google Scholar 

  • Schüz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286:442–455

    PubMed  Google Scholar 

  • Schüz A, Braitenberg V (2002) The human cortical white matter: quantitative aspects of cortico-cortical long-range connectivity. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor & Francis, London, pp 377–385

    Google Scholar 

  • Schüz A, Chaimow D, Liewald D, Dortenmann M (2006) Quantitative aspects of corticocortical connecctions: a tracer study in the mouse. Cerebral Cortex 16:1474–1486. doi:10.1093/cercor/bhj085

    PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    CAS  PubMed  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    CAS  PubMed  Google Scholar 

  • Schwenker F, Sommer FT, Palm G (1996) Iterative retrieval of sparsely coded associative memory patterns. Neural Netw 9(3):445–455

    Google Scholar 

  • Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17:417–422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shtyrov Y, Smith M, Horner AJ, Henson R, Nathan PJ, Bullmore ET, Pulvermüller F (2012) Attention to language: novel MEG paradigm for registering involuntary language processing in the brain. Neuropsychologia. doi:10.1016/j.neuropsychologia.2012.07.012

  • Softky W (1995) Simple codes versus efficient codes. Curr Opin Neurobiol 5:239–247

    CAS  PubMed  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    CAS  PubMed  Google Scholar 

  • Spruston N (2009) Pyramidal neuron. Scholarpedia 4(5):6130

    Google Scholar 

  • Stepanyants A, Chklovskii DB (2005) Neurogeometry and potential synaptic connectivity. TINS 28(7):387–394

    CAS  PubMed  Google Scholar 

  • Stepanyants A, Hirsch JA, Martinez LM, Kisvárday ZF, Ferecskó AS, Chklovskii DB (2008) Local potential connectivity in cat primary visual cortex. Cerebral Cortex 18:13–28. doi:10.1093/cercor/bhm027

    PubMed  Google Scholar 

  • Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kötter R (2001) Advanced database methodology for the collation of connectivity data on the macaque brain (CoCoMac). Philos Trans R Soc London B Biol Sci 356:1159–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. The MIT Press, Cambridge

    Google Scholar 

  • Szatmáry B, Izhikevich EM (2010) Spike-timing theory of working memory. PLoS Comput Biol 6(8):e1000879. doi:10.1371/journal.pcbi.1000879

    PubMed Central  PubMed  Google Scholar 

  • Thomson AM, Deuschars J (1994) Temporal and spatial properties of local circuits in neocortex. TINS 17(1):119–126

    CAS  PubMed  Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522

    CAS  PubMed  Google Scholar 

  • Turing AM (1936) On computable numbers with an application to the Entscheidungsproblem. Proc of the London Math Soc 2, 42:230–265, 43:544–546

  • Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643

    CAS  PubMed  Google Scholar 

  • Van Rullen R, Thorpe SJ (2001) The time course of visual processing: from early perception to decision-making. J Cogn Neurosci 13(4):454–461

    Google Scholar 

  • Voges N, Schüz A, Aertsen A, Rotter S (2010) A modeler’s view on the spatial structure of intrinsic horizontal connectivity in the neocortex. Progr in Neurobiol 92:277–292

    Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–468

    Google Scholar 

  • Wallace DJ, Kerr JND (2010) Chasing the cell assembly. Curr Opin Neurobiol 20:296–305

    CAS  PubMed  Google Scholar 

  • Waydo S, Kraskov A, Quiroga R, Fried I, Koch C (2006) Sparse representation in the human medial temporal lobe. J Neurosci 26(40):10232–10234

    CAS  PubMed  Google Scholar 

  • Weidenbacher U, Neumann H (2009) Extraction of surface-related features in a recurrent model of V1–V2 interactions. PLoS ONE 4(6):e5909

    PubMed Central  PubMed  Google Scholar 

  • Wennekers Th, Sommer FT, Palm G (1995) Iterative retrieval in associative memories by threshold control of different neural models. In: Hermann HJ (ed) Proceedings of the workshop on supercomputers in brain research. World Scientific Publishing Company, Singapore

    Google Scholar 

  • Wennekers Th, Palm G (1996) Controlling the speed of synfire chains. In: von der Malsburg C et al. (eds) Artificial neural networks - ICANN 96. Proceedings international conference, Bochum, July 1996. LNCS 1112, Springer, Berlin, pp 451–456

  • Wennekers Th (1998) Synfire graphs: from spike patterns to automata of spiking neurons. UIB-1998–08

  • Wennekers Th, Palm G (1999) How imprecise is neuronal synchronization? Neurocomputing 26–27:579–585

    Google Scholar 

  • Wennekers Th (2006) Operational cell assemblies as a paradigm for brain-inspired future computing architectures. Neural Inf Process Lett Rev 10(4–6):135–145

    Google Scholar 

  • Wennekers Th, Palm G (2007) Modelling generic cognitive functions with operational Hebbian cell assemblies. In: Weiss ML (ed) Neural network research horizons. Nova Science Publishers, Hauppauge

  • Wennekers Th, Palm G (2009) Syntactic sequencing in Hebbian cell assemblies. Cogn Neurodyn 3(4):429–441. doi:10.1007/s11571-009-9095-z

  • White EL (1989) Cortical circuits, synaptic organization of the cerebral cortex. Structure, function, and theory. Birkhäuser, Boston

  • Winston PH (1984) Artificial intelligence. Addison-Wesley, Boston

    Google Scholar 

  • Wiesel TN, Hubel DH (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28:1029–1040

    CAS  PubMed  Google Scholar 

  • Wolff JR (1976) Quantitative analysis of topography and development of synapses in the visual cortex. Exp Brain Res Suppl 1:259–263

    Google Scholar 

  • Yen S, Baker J, Gray C (2007) Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. J Neurophysiol 97:1326–1341

    PubMed  Google Scholar 

  • Young MP, Scannell JW, Burns GACP (1995) The analysis of cortical connectivity. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Palm.

Additional information

This article forms part of a special issue of Biological Cybernetics entitled “Structural Aspects of Biological Cybernetics: Valentino Braitenberg, Neuroanatomy, and Brain Function”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palm, G., Knoblauch, A., Hauser, F. et al. Cell assemblies in the cerebral cortex. Biol Cybern 108, 559–572 (2014). https://doi.org/10.1007/s00422-014-0596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-014-0596-4

Keywords

Navigation