Skip to main content

Advertisement

Log in

The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects

  • The ABC of Solute Carriers
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The solute carrier family 1 (SLC1) includes five high-affinity glutamate transporters, EAAC1, GLT-1, GLAST, EAAT4 and EAAT5 (SLC1A1, SLC1A2, SLC1A3, SLC1A6, and SLC1A7, respectively) as well as the two neutral amino acid transporters, ASCT1 and ASCT2 (SLC1A4 and ALC1A5, respectively). Although each of these transporters have similar predicted structures, they exhibit distinct functional properties which are variations of a common transport mechanism. The high-affinity glutamate transporters mediate transport of l-Glu, l-Asp and d-Asp, accompanied by the cotransport of 3 Na+ and 1 H+, and the countertransport of 1 K+, whereas ASC transporters mediate Na+-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr. The unique coupling of the glutamate transporters allows uphill transport of glutamate into cells against a concentration gradient. This feature plays a crucial role in protecting neurons against glutamate excitotoxicity in the central nervous system. During pathological conditions, such as brain ischemia (e.g. after a stroke), however, glutamate exit can occur due to “reversed glutamate transport”, which is caused by a reversal of the electrochemical gradients of the coupling ions. Selective inhibition of the neuronal glutamate transporter EAAC1 (SLC1A1) may be of therapeutic interest to block glutamate release from neurons during ischemia. On the other hand, upregulation of the glial glutamate transporter GLT1 (SLC1A2) may help protect motor neurons in patients with amyotrophic lateral sclerosis (ALS), since loss of function of GLT1 has been associated with the pathogenesis of certain forms of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note: capital letters are used for the human “SLC” gene names, whereas lower case “slc” names refer to non-human versions (rodents, etc.)

References

  1. Aoki M, Lin CL, Rothstein JD, Geller BA, Hosler BA, Munsat TL, Horvitz HR, Brown RH Jr (1998) Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann Neurol 43:645–653

    CAS  PubMed  Google Scholar 

  2. Arriza JL, Kavanaugh MP, Fairman WA, Wu YN, Murdoch GH, North RA, Amara SG (1993) Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem 268:15329–15332

    CAS  PubMed  Google Scholar 

  3. Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    CAS  PubMed  Google Scholar 

  4. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    Article  CAS  PubMed  Google Scholar 

  5. Auger C, Attwell D (2000) Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28:547–558

    CAS  PubMed  Google Scholar 

  6. Avissar NE, Ryan CK, Ganapathy V, Sax HC (2001) Na(+)-dependent neutral amino acid transporter ATB(0) is a rabbit epithelial cell brush-border protein. Am J Physiol 281:C963–C971

    CAS  Google Scholar 

  7. Berger UV, Hediger MA (1998) Comparative analysis of glutamate transporter expression in rat brain using differential double in situ hybridization. Anat Embryol (Berl) 198:13–30

    Google Scholar 

  8. Broer A, Wagner C, Lang F, Broer S (2000) Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem J 346:705–710

    CAS  PubMed  Google Scholar 

  9. Brown RH Jr (1995) Amyotrophic lateral sclerosis: recent insights from genetics and transgenic mice. Cell 80:687–692

    CAS  PubMed  Google Scholar 

  10. Casado M, Bendahan A, Zafra F, Danbolt NC, Aragon C, Gimenez C, Kanner BI (1993) Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J Biol Chem 268:27313–27317

    CAS  PubMed  Google Scholar 

  11. Conradt M, Stoffel W (1997) Inhibition of the high-affinity brain glutamate transporter GLAST-1 via direct phosphorylation. J Neurochem 68:1244–1251

    CAS  PubMed  Google Scholar 

  12. Danbolt NC, Storm-Mathisen J, Kanner BI (1992) An [Na++K+]coupled l-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51:295–310

    CAS  PubMed  Google Scholar 

  13. Davis KE, Straff DJ, Weinstein EA, Bannerman PG, Correale DM, Rothstein JD, Robinson MB (1998) Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J Neurosci 18:2475–2485

    CAS  PubMed  Google Scholar 

  14. Dowd LA, Robinson MB (1996) Rapid stimulation of EAAC1-mediated Na+-dependent l-glutamate transport activity in C6 glioma cells by phorbol ester. J Neurochem 67:508–516

    CAS  PubMed  Google Scholar 

  15. Drejer J, Meier E, Schousboe A (1983) Novel neuron-related regulatory mechanisms for astrocytic glutamate and GABA high-affinity uptake. Neurosci Lett 37:301–306

    Article  CAS  PubMed  Google Scholar 

  16. Dunlop J, Lou Z, McIlvain HB (1999) Properties of excitatory amino acid transport in the human U373 astrocytoma cell line. Brain Res 839:235–242

    Article  CAS  PubMed  Google Scholar 

  17. Eskandari S, Kreman M, Kavanaugh MP, Wright EM, Zampighi GA (2000) Pentameric assembly of a neuronal glutamate transporter. Proc Natl Acad Sci USA 97:8641–8646

    Article  CAS  PubMed  Google Scholar 

  18. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Google Scholar 

  19. Figiel M, Engele J (2000) Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron-derived peptide regulating glial glutamate transport and metabolism. J Neurosci 20:3596–3605

    CAS  PubMed  Google Scholar 

  20. Gegelashvili G, Schousboe A (1997) High-affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15

    CAS  PubMed  Google Scholar 

  21. Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A (2000) The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int 37:163–170

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez MI, Bannerman PG, Robinson MB (2003) Phorbol myristate acetate-dependent interaction of protein kinase C (alpha) and the neuronal glutamate transporter EAAC1. J Neurosci 23:5589–5593

    CAS  PubMed  Google Scholar 

  23. Grewer C, Watzke N, Wiessner M, Rauen T (2000) Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc Natl Acad Sci USA 97:9706–9711

    CAS  PubMed  Google Scholar 

  24. Grunewald M, Kanner BI (2000) The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate. J Biol Chem 275:9684–9689

    Article  CAS  PubMed  Google Scholar 

  25. Grunewald M, Bendahan A, Kanner BI (1998) Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron 21:623–632

    CAS  PubMed  Google Scholar 

  26. Guo H, Lai L, Butchbach ME, Lin CL (2002) Human glioma cells and undifferentiated primary astrocytes that express aberrant EAAT2 mRNA inhibit normal EAAT2 protein expression and prevent cell death. Mol Cell Neurosci 21:546–560

    Article  CAS  PubMed  Google Scholar 

  27. Guo ZH, Mattson MP (2000) Neurotrophic factors protect cortical synaptic terminals against amyloid and oxidative stress-induced impairment of glucose transport, glutamate transport and mitochondrial function. Cereb Cortex 10:50–57

    Article  CAS  PubMed  Google Scholar 

  28. Hakuba N, Koga K, Gyo K, Usami SI, Tanaka K (2000) Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter GLAST. J Neurosci 20:8750–8753

    CAS  PubMed  Google Scholar 

  29. Harada T, Harada C, Watanabe M, Inoue Y, Sakagawa T, Nakayama N, Sasaki S, Okuyama S, Watase K, Wada K, Tanaka K (1998) Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proc Natl Acad Sci USA 95:4663–4666

    CAS  PubMed  Google Scholar 

  30. Hediger MA (1999) Glutamate transporters in kidney and brain. Am J Physiol 277:F487–F492

    CAS  PubMed  Google Scholar 

  31. Hediger MA, Welbourne TC (1999) Introduction: glutamate transport, metabolism, and physiological responses. Am J Physiol 277:F477–F480

    CAS  PubMed  Google Scholar 

  32. Heinz E, Sommerfeld DL, Kinne RK (1988) Electrogenicity of sodium/l-glutamate cotransport in rabbit renal brush- border membranes: a reevaluation. Biochim Biophys Acta 937:300–308

    Article  CAS  PubMed  Google Scholar 

  33. Honig LS, Chambliss DD, Bigio EH, Carroll SL, Elliott JL (2000) Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Neurology 55:1082–1088

    CAS  PubMed  Google Scholar 

  34. Isaacson JS, Nicoll RA (1993) The uptake inhibitorl-trans-PDC enhances responses to glutamate but fails to alter the kinetics of excitatory synaptic currents in the hippocampus. J Neurophysiol 70:2187–2191

    CAS  PubMed  Google Scholar 

  35. Jackson M, Song W, Liu MY, Jin L, Dykes-Hoberg M, Lin CI, Bowers WJ, Federoff HJ, Sternweis PC, Rothstein JD (2001) Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410:89–93

    Article  CAS  PubMed  Google Scholar 

  36. Kanai Y (1997) Family of neutral and acidic amino acid transporters: molecular biology, physiology and medical implications. Curr Opin Cell Biol 9:565–572

    CAS  PubMed  Google Scholar 

  37. Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471

    Google Scholar 

  38. Kanai Y, Hediger MA (2001) High-affinity glutamate transporters: physiological and pathophysiological relevance in the central nervous system. In: Brann DW, Mahesh VB (eds) Excitatory amino acids: their role in neuroendocrine function. CRC Press, Boca Raton, pp 103–131

  39. Kanai Y, Stelzner M, Nussberger S, Khawaja S, Hebert SC, Smith CP, Hediger MA (1994) The neuronal and epithelial human high-affinity glutamate transporter. Insights into structure and mechanism of transport. J Biol Chem 269:20599–20606

    CAS  PubMed  Google Scholar 

  40. Kanai Y, Bhide PG, DiFiglia M, Hediger MA (1995) Neuronal high-affinity glutamate transport in the rat central nervous system. Neuroreport 6:2357–2362

    PubMed  Google Scholar 

  41. Kanai Y, Nussberger S, Romero MF, Boron WF, Hebert SC, Hediger MA (1995) Electrogenic properties of the epithelial and neuronal high-affinity glutamate transporter. J Biol Chem 270:16561–16568

    Article  CAS  PubMed  Google Scholar 

  42. Kavanaugh MP, Bendahan A, Zerangue N, Zhang Y, Kanner BI (1997) Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J Biol Chem 272:1703–1708

    CAS  PubMed  Google Scholar 

  43. Kekuda R, Prasad PD, Fei YJ, Torres-Zamorano V, Sinha S, Yang-Feng TL, Leibach FH, Ganapathy V (1996) Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter Bo from a human placental choriocarcinoma cell line. J Biol Chem 271:18657–18661

    Article  CAS  PubMed  Google Scholar 

  44. Klockner U, Storck T, Conradt M, Stoffel W (1993) Electrogenicl-glutamate uptake in Xenopus laevis oocytes expressing a cloned rat brain l-glutamate/l-aspartate transporter (GLAST-1). J Biol Chem 268:14594–14596

    CAS  PubMed  Google Scholar 

  45. Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18:9620–9628

    CAS  PubMed  Google Scholar 

  46. Lin CL, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T, Clawson L, Rothstein JD (1998) Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20:589–602

    CAS  PubMed  Google Scholar 

  47. Lin CI, Orlov I, Ruggiero AM, Dykes-Hoberg M, Lee A, Jackson M, Rothstein JD (2001) Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3–18. Nature 410:84–88

    CAS  PubMed  Google Scholar 

  48. Matthews JC, Beveridge MJ, Dialynas E, Bartke A, Kilberg MS, Novak DA (1999) Placental anionic and cationic amino acid transporter expression in growth hormone overexpressing and null IGF-II or null IGF-I receptor mice. Placenta 20:639–650

    Article  CAS  PubMed  Google Scholar 

  49. Mennerick S, Zorumski CF (1994) Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 368:59–62

    Article  CAS  PubMed  Google Scholar 

  50. Meyer T, Fromm A, Munch C, Schwalenstocker B, Fray AE, Ince PG, Stamm S, Gron G, Ludolph AC, Shaw PJ (1999) The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J Neurol Sci 170:45–50

    Article  CAS  PubMed  Google Scholar 

  51. Nagao S, Kwak S, Kanazawa I (1997) EAAT4, a glutamate transporter with properties of a chloride channel, is predominantly localized in Purkinje cell dendrites, and forms parasagittal compartments in rat cerebellum. Neuroscience 78:929–933

    Article  CAS  PubMed  Google Scholar 

  52. Otis TS, Kavanaugh MP (2000) Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J Neurosci 20:2749–2757

    CAS  PubMed  Google Scholar 

  53. Palos TP, Zheng S, Howard BD (1999) Wnt signaling induces GLT-1 expression in rat C6 glioma cells. J Neurochem 73:1012–1023

    Article  CAS  PubMed  Google Scholar 

  54. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44:819–824

    CAS  PubMed  Google Scholar 

  55. Peghini P, Janzen J, Stoffel W (1997) Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J 16:3822–3832

    CAS  PubMed  Google Scholar 

  56. Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brainl-glutamate transporter. Nature 360:464–467

    Google Scholar 

  57. Pow DV, Barnett NL (2000) Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett 280:21–24

    Article  PubMed  Google Scholar 

  58. Pow DV, Barnett NL, Penfold P (2000) Are neuronal transporters relevant in retinal glutamate homeostasis? Neurochem Int 37:191–198

    Article  CAS  PubMed  Google Scholar 

  59. Rasko JE, Battini JL, Gottschalk RJ, Mazo I, Miller AD (1999) The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc Natl Acad Sci USA 96:2129–2134

    Article  CAS  PubMed  Google Scholar 

  60. Robberecht W, Sapp P, Viaene MK, Rosen D, McKenna-Yasek D, Haines J, Horvitz R, Theys P, Brown R Jr (1994) Cu/Zn superoxide dismutase activity in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 62:384–387

    CAS  PubMed  Google Scholar 

  61. Rosen DR, Bowling AC, Patterson D, Usdin TB, Sapp P, Mezey E, McKenna-Yasek D, O’Regan J, Rahmani Z, Ferrante RJ (1994) A frequent ala 4 to val superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis. Hum Mol Genet 3:981–987

    Google Scholar 

  62. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Google Scholar 

  63. Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW (1993) Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 90:6591–6595

    CAS  PubMed  Google Scholar 

  64. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    CAS  PubMed  Google Scholar 

  65. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    CAS  PubMed  Google Scholar 

  66. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    CAS  PubMed  Google Scholar 

  67. Sakai K, Shimizu H, Koike T, Furuya S, Watanabe M (2003) Neutral amino acid transporter ASCT1 is preferentially expressed inl-Ser-synthetic/storing glial cells in the mouse brain with transient expression in developing capillaries. J Neurosci 23:550–560

    CAS  PubMed  Google Scholar 

  68. Sarantis M, Ballerini L, Miller B, Silver RA, Edwards M, Attwell D (1993) Glutamate uptake from the synaptic cleft does not shape the decay of the non-NMDA component of the synaptic current. Neuron 11:541–549

    CAS  PubMed  Google Scholar 

  69. Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    CAS  PubMed  Google Scholar 

  70. Seal RP, Leighton BH, Amara SG (2000) A model for the topology of excitatory amino acid transporters determined by the extracellular accessibility of substituted cysteines. Neuron 25:695–706

    CAS  PubMed  Google Scholar 

  71. Shafqat S, Tamarappoo BK, Kilberg MS, Puranam RS, McNamara JO, Guadano-Ferraz A, Fremeau RT Jr (1993) Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J Biol Chem 268:15351–15355

    CAS  PubMed  Google Scholar 

  72. Shayakul C, Kanai Y, Lee WS, Brown D, Rothstein JD, Hediger MA (1997) Localization of the high-affinity glutamate transporter EAAC1 in rat kidney. Am J Physiol 273:F1023–F1029

    CAS  PubMed  Google Scholar 

  73. Sims KD, Straff DJ, Robinson MB (2000) Platelet-derived growth factor rapidly increases activity and cell surface expression of the EAAC1 subtype of glutamate transporter through activation of phosphatidylinositol 3-kinase. J Biol Chem 275:5228–5237

    Article  CAS  PubMed  Google Scholar 

  74. Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89:10955–10959

    CAS  PubMed  Google Scholar 

  75. Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    CAS  PubMed  Google Scholar 

  76. Tamarappoo BK, McDonald KK, Kilberg MS (1996) Expressed human hippocampal ASCT1 amino acid transporter exhibits a pH-dependent change in substrate specificity. Biochim Biophys Acta 1279:131–136

    CAS  PubMed  Google Scholar 

  77. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    CAS  PubMed  Google Scholar 

  78. Tong G, Jahr CE (1994) Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13:1195–1203

    CAS  PubMed  Google Scholar 

  79. Trotti D, Rolfs A, Danbolt NC, Brown RH Jr, Hediger MA (1999) SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 2:848

    Article  CAS  Google Scholar 

  80. Trotti D, Peng JB, Dunlop J, Hediger MA (2001) Inhibition of the glutamate transporter EAAC1 expressed in Xenopus oocytes by phorbol esters. Brain Res 914:196–203

    Article  CAS  PubMed  Google Scholar 

  81. Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271:14883–14890

    CAS  PubMed  Google Scholar 

  82. Utsunomiya-Tate N, Endou H, Kanai Y (1997) Tissue specific variants of glutamate transporter GLT-1. FEBS Lett 416:312–316

    Article  CAS  PubMed  Google Scholar 

  83. Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728

    CAS  PubMed  Google Scholar 

  84. Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14:1019–1027

    CAS  PubMed  Google Scholar 

  85. Watanabe T, Morimoto K, Hirao T, Suwaki H, Watase K, Tanaka K (1999) Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice. Brain Res 845:92–96

    Article  CAS  PubMed  Google Scholar 

  86. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10:976–988

    Article  CAS  PubMed  Google Scholar 

  87. Zelenaia O, Schlag BD, Gochenauer GE, Ganel R, Song W, Beesley JS, Grinspan JB, Rothstein JD, Robinson MB (2000) Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol 57:667–678

    CAS  PubMed  Google Scholar 

  88. Zerangue N, Kavanaugh MP (1996) ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J Biol Chem 271:27991–27994

    CAS  PubMed  Google Scholar 

  89. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    CAS  PubMed  Google Scholar 

  90. Zerangue N, Kavanaugh MP (1996) Interaction ofl-cysteine with a human excitatory amino acid transporter. J Physiol (Lond) 493:419–423

    Google Scholar 

  91. Zhang Y, Kanner BI (1999) Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter. Proc Natl Acad Sci USA 96:1710–1715

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Y, Bendahan A, Zarbiv R, Kavanaugh MP, Kanner BI (1998) Molecular determinant of ion selectivity of a (Na++K+)-coupled rat brain glutamate transporter. Proc Natl Acad Sci USA 95:751–755

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias A. Hediger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanai, Y., Hediger, M.A. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch - Eur J Physiol 447, 469–479 (2004). https://doi.org/10.1007/s00424-003-1146-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1146-4

Keywords

Navigation