Skip to main content

Advertisement

Log in

P2 receptors: intracellular signaling

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

P2 receptors for extracellular nucleotides are divided into two categories: the ion channel receptors (P2X) and the G-protein-coupled receptors (P2Y). For the P2X receptors, signal transduction appears to be relatively simple. Upon activation by extracellular ATP, a channel comprised of P2X receptor subunits opens and allows cations to move across the plasma membrane, resulting in changes in the electrical potential of the cell that, in turn, propagates a signal. This regulated flux of ions across the plasma membrane has important signaling functions, especially in impulse propagation in the nervous system and in muscle contractility. In addition, P2X receptor activation causes the accumulation of calcium ions in the cytoplasm, which is responsible for activating numerous signaling molecules. For the P2Y receptors, signal transduction is more complex. Intracellular signaling cascades are the main routes of communication between G-protein-coupled receptors and regulatory targets within the cell. These signaling cascades operate mainly by the sequential activation or deactivation of heterotrimeric and monomeric G proteins, phospholipases, protein kinases, adenylyl and guanylyl cyclases, and phosphodiesterases that regulate many cellular processes, including proliferation, differentiation, apoptosis, metabolism, secretion, and cell migration. In addition, there are numerous ion channels, cell adhesion molecules and receptor tyrosine kinases that are modulated by P2Y receptors and operate to transmit an extracellular signal to an intracellular response. These intracellular signaling pathways and their regulation by P2 receptors are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adinolfi E, Kim M, Young MT, Di Virgilio F, Surprenant A (2003) Tyrosine phosphorylation of HSP90 within the P2X7 receptor complex negatively regulates P2X7 receptors. J Biol Chem 278:37344–37351

    Article  PubMed  CAS  Google Scholar 

  2. Aga M, Watters JJ, Pfeiffer ZA, Wiepz GJ, Sommer JA, Bertics PJ (2004) Evidence for nucleotide receptor modulation of cross talk between MAP kinase and NF-kappa B signaling pathways in murine RAW 264.7 macrophages. Am J Physiol Cell Physiol 286:C923–C930

    Article  PubMed  CAS  Google Scholar 

  3. Ahn JS, Camden JM, Schrader AM, Redman RS, Turner JT (2000) Reversible regulation of P2Y(2) nucleotide receptor expression in the duct-ligated rat submandibular gland. Am J Physiol Cell Physiol 279:C286–C294

    PubMed  CAS  Google Scholar 

  4. Amstrup J, Novak I (2003) P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx. Biochem J 374:51–61

    Article  PubMed  CAS  Google Scholar 

  5. Ayyanathan K, Webbs TE, Sandhu AK, Athwal RS, Barnard EA, Kunapuli SP (1996) Cloning and chromosomal localization of the human P2Y1 purinoceptor. Biochem Biophys Res Commun 218:783–788

    Article  PubMed  CAS  Google Scholar 

  6. Bagchi S, Liao Z, Gonzalez FA, Chorna NE, Seye CI, Weisman GA, Erb L (2005) The P2Y2 nucleotide receptor interacts with alphav integrins to activate Go and induce cell migration. J Biol Chem 280:39050–39057

    Article  PubMed  CAS  Google Scholar 

  7. Balsinde J, Winstead MV, Dennis EA (2002) Phospholipase A(2) regulation of arachidonic acid mobilization. FEBS Lett 531:2–6

    Article  PubMed  CAS  Google Scholar 

  8. Baltensperger K, Porzig H (1997) The P2U purinoceptor obligatorily engages the heterotrimeric G protein G16 to mobilize intracellular Ca2+ in human erythroleukemia cells. J Biol Chem 272:10151–10159

    Article  PubMed  CAS  Google Scholar 

  9. Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott A (1997) ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci 17:5297–304

    PubMed  CAS  Google Scholar 

  10. Bean BP (1992) Pharmacology and electrophysiology of ATP-activated ion channels. Trends Pharmacol Sci 13:87–90

    Article  PubMed  CAS  Google Scholar 

  11. Bodor ET, Waldo GL, Hooks SB, Corbitt J, Boyer JL, Harden TK (2003) Purification and functional reconstitution of the human P2Y12 receptor. Mol Pharmacol 64:1210–1216

    Article  PubMed  CAS  Google Scholar 

  12. Boue-Grabot E, Archambault V, Seguela P (2000) A protein kinase C site highly conserved in P2X subunits controls the desensitization kinetics of P2X(2) ATP-gated channels. J Biol Chem 275:10190–10195

    Article  PubMed  CAS  Google Scholar 

  13. Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523

    Article  PubMed  CAS  Google Scholar 

  14. Brown DA, Filippov AK, Barnard EA (2000) Inhibition of potassium and calcium currents in neurones by molecularly defined P2Y receptors. J Auton Nerv Syst 81:31–36

    Article  PubMed  CAS  Google Scholar 

  15. Budagian V, Bulanova E, Brovko L, Orinska Z, Fayad R et al (2003) Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. J Biol Chem 278:1549–1560

    Article  PubMed  CAS  Google Scholar 

  16. Bulanova E, Budagian V, Orinska Z, Hein M, Petersen F et al (2005) Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells. J Immunol 174:3880–3890

    PubMed  CAS  Google Scholar 

  17. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  18. Burnstock G (2004) Introduction: P2 receptors. Curr Top Med Chem 4:793–803

    PubMed  CAS  Google Scholar 

  19. Burrell HE, Bowler WB, Gallagher JA, Sharpe GR (2003) Human keratinocytes express multiple P2Y-receptors: evidence for functional P2Y1, P2Y2, and P2Y4 receptors. J Invest Dermatol 120:440–447

    Article  PubMed  CAS  Google Scholar 

  20. Camden JM, Schrader AM, Camden RE, Gonzalez FA, Erb L et al (2005) P2Y2 nucleotide receptors enhance alpha-secretase-dependent amyloid precursor protein processing. J Biol Chem 280:18696–18702

    Article  PubMed  CAS  Google Scholar 

  21. Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K et al (2000) A G protein-coupled receptor for UDP-glucose. J Biol Chem 275:10767–10771

    Article  PubMed  CAS  Google Scholar 

  22. Chorna NE, Santiago-Perez LI, Erb L, Seye CI, Neary JT et al (2004) P2Y receptors activate neuroprotective mechanisms in astrocytic cells. J Neurochem 91:119–132

    Article  PubMed  CAS  Google Scholar 

  23. Chow YW, Wang HL (1998) Functional modulation of P2X2 receptors by cyclic AMP-dependent protein kinase. J Neurochem 70:2606–2612

    Article  PubMed  CAS  Google Scholar 

  24. Clarke LL, Boucher RC (1992) Chloride secretory response to extracellular ATP in human normal and cystic fibrosis nasal epithelia. Am J Physiol 263:C348–5C36

    PubMed  CAS  Google Scholar 

  25. Clarke LL, Harline MC, Gawenis LR, Walker NM, Turner JT, Weisman GA (2000) Extracellular UTP stimulates electrogenic bicarbonate secretion across CFTR knockout gallbladder epithelium. Am J Physiol Gastrointest Liver Physiol 279:G132–G138

    PubMed  CAS  Google Scholar 

  26. Clarke LL, Harline MC, Otero MA, Glover GG, Garrad RC et al (1999) Desensitization of P2Y2 receptor-activated transepithelial anion secretion. Am J Physiol 276:C777–C787

    PubMed  CAS  Google Scholar 

  27. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y et al (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407:1011–1015

    Article  PubMed  CAS  Google Scholar 

  28. Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V et al (2001) Identification of a novel human ADP receptor coupled to G(i). J Biol Chem 276:41479–41485

    Article  PubMed  CAS  Google Scholar 

  29. Communi D, Govaerts C, Parmentier M, Boeynaems JM (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272:31969–31973

    Article  PubMed  CAS  Google Scholar 

  30. Communi D, Motte S, Boeynaems JM, Pirotton S (1996) Pharmacological characterization of the human P2Y4 receptor. Eur J Pharmacol 317:383–389

    Article  PubMed  CAS  Google Scholar 

  31. Communi D, Parmentier M, Boeynaems JM (1996) Cloning, functional expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun 222:303–308

    Article  PubMed  CAS  Google Scholar 

  32. Communi D, Pirotton S, Parmentier M, Boeynaems JM (1995) Cloning and functional expression of a human uridine nucleotide receptor. J Biol Chem 270:30849-30852

    Article  PubMed  CAS  Google Scholar 

  33. Cressman VL, Lazarowski E, Homolya L, Boucher RC, Koller BH, Grubb BR (1999) Effect of loss of P2Y(2) receptor gene expression on nucleotide regulation of murine epithelial Cl(−) transport. J Biol Chem 274:26461–26468

    Article  PubMed  CAS  Google Scholar 

  34. Denlinger LC, Fisette PL, Sommer JA, Watters JJ, Prabhu U et al (2001) Cutting edge: the nucleotide receptor P2X7 contains multiple protein- and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide. J Immunol 167:1871–1876

    PubMed  CAS  Google Scholar 

  35. Denlinger LC, Sommer JA, Parker K, Gudipaty L, Fisette PL et al (2003) Mutation of a dibasic amino acid motif within the C terminus of the P2X7 nucleotide receptor results in trafficking defects and impaired function. J Immunol 171:1304–1311

    PubMed  CAS  Google Scholar 

  36. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J et al (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32:e49

    Article  PubMed  CAS  Google Scholar 

  37. Dubyak GR, el-Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265:C577–C606

    PubMed  CAS  Google Scholar 

  38. Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system (see comment). Nature 359:144–147

    Article  PubMed  CAS  Google Scholar 

  39. Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC et al (2001) An RGD sequence in the P2Y(2) receptor interacts with alpha(V)beta(3) integrins and is required for G(o)-mediated signal transduction. J Cell Biol 153:491–501

    Article  PubMed  CAS  Google Scholar 

  40. Erb L, Lustig KD, Ahmed AH, Gonzalez FA, Weisman GA (1990) Covalent incorporation of 3′-O-(4-benzoyl)benzoyl-ATP into a P2 purinoceptor in transformed mouse fibroblasts. J Biol Chem 265:7424–7431

    PubMed  CAS  Google Scholar 

  41. Felder CC, Williams HL, Axelrod J (1991) A transduction pathway associated with receptors coupled to the inhibitory guanine nucleotide binding protein Gi that amplifies ATP-mediated arachidonic acid release. Proc Natl Acad Sci U S A 88:6477–6480

    PubMed  CAS  Google Scholar 

  42. Feng YH, Wang L, Wang Q, Li X, Zeng R, Gorodeski GI (2005) ATP stimulates GRK-3 phosphorylation and beta-arrestin-2-dependent internalization of P2X7 receptor. Am J Physiol Cell Physiol 288:C1342–C1356

    Article  PubMed  CAS  Google Scholar 

  43. Filippov AK, Simon J, Barnard EA, Brown DA (2003) Coupling of the nucleotide P2Y4 receptor to neuronal ion channels. Br J Pharmacol 138:400–406

    Article  PubMed  CAS  Google Scholar 

  44. Filippov AK, Webb TE, Barnard EA, Brown DA (1997) Inhibition by heterologously expressed P2Y2 nucleotide receptors of N-type calcium currents in rat sympathetic neurones. Br J Pharmacol 121:849–851

    PubMed  CAS  Google Scholar 

  45. Flores RV, Hernandez-Perez MG, Aquino E, Garrad RC, Weisman GA, Gonzalez FA (2005) Agonist-induced phosphorylation and desensitization of the P2Y2 nucleotide receptor. Mol Cell Biochem 280:35–45

    Article  PubMed  CAS  Google Scholar 

  46. Garcia-Guzman M, Soto F, Gomez-Hernandez JM, Lund PE, Stuhmer W (1997) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51:109–118

    PubMed  CAS  Google Scholar 

  47. Garcia-Guzman M, Stuhmer W, Soto F (1997) Molecular characterization and pharmacological properties of the human P2X3 purinoceptor. Brain Res Mol Brain Res 47:59–66

    Article  PubMed  Google Scholar 

  48. Garrad RC, Otero MA, Erb L, Theiss PM, Clarke LL et al (1998) Structural basis of agonist-induced desensitization and sequestration of the P2Y2 nucleotide receptor. Consequences of truncation of the C terminus. J Biol Chem 273:29437–29444

    Article  PubMed  CAS  Google Scholar 

  49. Gendron FP, Chalimoniuk M, Strosznajder J, Shen S, Gonzalez FA et al (2003) P2X7 nucleotide receptor activation enhances IFN gamma-induced type II nitric oxide synthase activity in BV-2 microglial cells. J Neurochem 87:344–352

    Article  PubMed  CAS  Google Scholar 

  50. Gendron FP, Neary JT, Theiss PM, Sun GY, Gonzalez FA, Weisman GA (2003) Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am J Physiol Cell Physiol 284:C571–C581

    PubMed  CAS  Google Scholar 

  51. Gerwins P, Fredholm BB (1992) ATP and its metabolite adenosine act synergistically to mobilize intracellular calcium via the formation of inositol 1,4,5-trisphosphate in a smooth muscle cell line. J Biol Chem 267:16081–16087

    PubMed  CAS  Google Scholar 

  52. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    Article  PubMed  CAS  Google Scholar 

  53. Godecke S, Decking UK, Godecke A, Schrader J (1996) Cloning of the rat P2u receptor and its potential role in coronary vasodilation. Am J Physiol 270:C570–C577

    PubMed  CAS  Google Scholar 

  54. Greig AV, James SE, McGrouther DA, Terenghi G, Burnstock G (2003) Purinergic receptor expression in the regeneration epidermis in a rat model of normal and delayed wound healing. Exp Dermatol 12:860–871

    Article  PubMed  CAS  Google Scholar 

  55. Greig AV, Linge C, Cambrey A, Burnstock G (2003) Purinergic receptors are part of a signaling system for keratinocyte proliferation, differentiation, and apoptosis in human fetal epidermis. J Invest Dermatol 121:1145–1149

    Article  PubMed  CAS  Google Scholar 

  56. Gudipaty L, Munetz J, Verhoef PA, Dubyak GR (2003) Essential role for Ca2+ in regulation of IL-1beta secretion by P2X7 nucleotide receptor in monocytes, macrophages, and HEK-293 cells. Am J Physiol Cell Physiol 285:C286–C299

    PubMed  CAS  Google Scholar 

  57. Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N et al (1998) A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci U S A 95:8496–8501

    Article  PubMed  CAS  Google Scholar 

  58. Hardy AR, Conley PB, Luo J, Benovic JL, Poole AW, Mundell SJ (2005) P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105:3552–3560

    Article  PubMed  CAS  Google Scholar 

  59. Hoebertz A, Mahendran S, Burnstock G, Arnett TR (2002) ATP and UTP at low concentrations strongly inhibit bone formation by osteoblasts: a novel role for the P2Y2 receptor in bone remodeling. J Cell Biochem 86:413–419

    Article  PubMed  CAS  Google Scholar 

  60. Hollopeter G, Jantzen HM, Vincent D, Li G, England L et al (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    Article  PubMed  CAS  Google Scholar 

  61. Hou M, Harden TK, Kuhn CM, Baldetorp B, Lazarowski E et al (2002) UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y(6) receptors. Am J Physiol Heart Circ Physiol 282:H784–H792

    PubMed  CAS  Google Scholar 

  62. Hou M, Moller S, Edvinsson L, Erlinge D (1999) MAPKK-dependent growth factor-induced upregulation of P2Y2 receptors in vascular smooth muscle cells. Biochem Biophys Res Commun 258:648–652

    Article  PubMed  CAS  Google Scholar 

  63. Hu Y, Fisette PL, Denlinger LC, Guadarrama AG, Sommer JA et al (1998) Purinergic receptor modulation of lipopolysaccharide signaling and inducible nitric-oxide synthase expression in RAW 264.7 macrophages. J Biol Chem 273:27170–27175

    Article  PubMed  CAS  Google Scholar 

  64. Kellerman D, Evans R, Mathews D, Shaffer C (2002) Inhaled P2Y2 receptor agonists as a treatment for patients with cystic fibrosis lung disease. Adv Drug Deliv Rev 54:1463–1474

    Article  PubMed  CAS  Google Scholar 

  65. Khakh BS, Henderson G (1998) ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol Pharmacol 54:372–378

    PubMed  CAS  Google Scholar 

  66. Kim M, Jiang LH, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex. Embo J 20:6347–6358

    Article  PubMed  CAS  Google Scholar 

  67. Korcok J, Raimundo LN, Ke HZ, Sims SM, Dixon SJ (2004) Extracellular nucleotides act through P2X7 receptors to activate NF-kappaB in osteoclasts. J Bone Miner Res 19:642–651

    PubMed  CAS  Google Scholar 

  68. Koshiba M, Apasov S, Sverdlov V, Chen P, Erb L et al (1997) Transient up-regulation of P2Y2 nucleotide receptor mRNA expression is an immediate early gene response in activated thymocytes. Proc Natl Acad Sci USA 94:831–836

    Article  PubMed  CAS  Google Scholar 

  69. Kunapuli SP, Ding Z, Dorsam RT, Kim S, Murugappan S, Quinton TM (2003) ADP receptors—targets for developing antithrombotic agents. Curr Pharm Des 9:2303–2316

    Article  PubMed  CAS  Google Scholar 

  70. Kunapuli SP, Dorsam RT, Kim S, Quinton TM (2003) Platelet purinergic receptors. Curr Opin Pharmacol 3:175–180

    Article  PubMed  CAS  Google Scholar 

  71. Lazarowski ER, Watt WC, Stutts MJ, Boucher RC, Harden TK (1995) Pharmacological selectivity of the cloned human P2U-purinoceptor: potent activation by diadenosine tetraphosphate. Br J Pharmacol 116:1619–1627

    PubMed  CAS  Google Scholar 

  72. Le KT, Paquet M, Nouel D, Babinski K, Seguela P (1997) Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system. FEBS Lett 418:195–199

    Article  PubMed  CAS  Google Scholar 

  73. Le Stunff H, Auger R, Kanellopoulos J, Raymond MN (2004) The Pro-451 to Leu polymorphism within the C-terminal tail of P2X7 receptor impairs cell death but not phospholipase D activation in murine thymocytes. J Biol Chem 279:16918–16926

    Article  PubMed  CAS  Google Scholar 

  74. Lee SY, Wolff SC, Nicholas RA, O’Grady SM (2003) P2Y receptors modulate ion channel function through interactions involving the C-terminal domain. Mol Pharmacol 63:878–885

    Article  PubMed  CAS  Google Scholar 

  75. Liebmann C (2004) G protein-coupled receptors and their signaling pathways: classical therapeutical targets susceptible to novel therapeutic concepts. Curr Pharm Des 10:1937-1958

    Article  PubMed  CAS  Google Scholar 

  76. Lin JW, Sugimori M, Llinas RR, McGuinness TL, Greengard P (1990) Effects of synapsin I and calcium/calmodulin-dependent protein kinase II on spontaneous neurotransmitter release in the squid giant synapse. Proc Natl Acad Sci U S A 87:8257–8261

    PubMed  CAS  Google Scholar 

  77. Liu J, Liao Z, Camden J, Griffin KD, Garrad RC et al (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 279:8212–8218

    Article  PubMed  CAS  Google Scholar 

  78. Lustig KD, Sportiello MG, Erb L, Weisman GA (1992) A nucleotide receptor in vascular endothelial cells is specifically activated by the fully ionized forms of ATP and UTP. Biochem J 284(Pt 3):733–739

    PubMed  CAS  Google Scholar 

  79. Lynch KJ, Touma E, Niforatos W, Kage KL, Burgard EC et al (1999) Molecular and functional characterization of human P2X(2) receptors. Mol Pharmacol 56:1171–1181

    PubMed  CAS  Google Scholar 

  80. Malam-Souley R, Seye C, Gadeau AP, Loirand G, Pillois X et al (1996) Nucleotide receptor P2u partially mediates ATP-induced cell cycle progression of aortic smooth muscle cells. J Cell Physiol 166:57–65

    Article  PubMed  CAS  Google Scholar 

  81. Marteau F, Le Poul E, Communi D, Labouret C, Savi P et al (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64:104–112

    Article  PubMed  CAS  Google Scholar 

  82. Martin KA, Kertesy SB, Dubyak GR (1997) Down-regulation of P2U-purinergic nucleotide receptor messenger RNA expression during in vitro differentiation of human myeloid leukocytes by phorbol esters or inflammatory activators. Mol Pharmacol 51:97–108

    PubMed  CAS  Google Scholar 

  83. Megson AC, Dickenson JM, Townsend-Nicholson A, Hill SJ (1995) Synergy between the inositol phosphate responses to transfected human adenosine A1-receptors and constitutive P2-purinoceptors in CHO-K1 cells. Br J Pharmacol 115:1415–1424

    PubMed  CAS  Google Scholar 

  84. Meshki J, Tuluc F, Bredetean O, Ding Z, Kunapuli SP (2004) Molecular mechanism of nucleotide-induced primary granule release in human neutrophils: role for the P2Y2 receptor. Am J Physiol Cell Physiol 286:C264–C271

    Article  PubMed  CAS  Google Scholar 

  85. Meyer CH, Hotta K, Peterson WM, Toth CA, Jaffe GJ (2002) Effect of INS37217, a P2Y(2) receptor agonist, on experimental retinal detachment and electroretinogram in adult rabbits. Invest Ophthalmol Vis Sci 43:3567–3574

    PubMed  Google Scholar 

  86. Miyagi Y, Kobayashi S, Ahmed A, Nishimura J, Fukui M, Kanaide H (1996) P2U purinergic activation leads to the cell cycle progression from the G1 to the S and M phases but not from the G0 to G1 phase in vascular smooth muscle cells in primary culture. Biochem Biophys Res Commun 222:652–658

    Article  PubMed  CAS  Google Scholar 

  87. Moers A, Nieswandt B, Massberg S, Wettschureck N, Gruner S et al (2003) G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med 9:1418–1422

    Article  PubMed  CAS  Google Scholar 

  88. Mundell SJ, Benovic JL (2000) Selective regulation of endogenous G protein-coupled receptors by arrestins in HEK293 cells. J Biol Chem 275:12900–12908

    Article  PubMed  CAS  Google Scholar 

  89. Murthy KS, Makhlouf GM (1998) Coexpression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-beta1 via Galphaq/11 and to PLC-beta3 via Gbetagammai3. J Biol Chem 273:4695–4704

    Article  PubMed  CAS  Google Scholar 

  90. Muscella A, Elia MG, Greco S, Storelli C, Marsigliante S (2003) Activation of P2Y2 receptor induces c-FOS protein through a pathway involving mitogen-activated protein kinases and phosphoinositide 3-kinases in HeLa cells. J Cell Physiol 195:234–240

    Article  PubMed  CAS  Google Scholar 

  91. Nguyen T, Erb L, Weisman GA, Marchese A, Heng HH et al (1995) Cloning, expression, and chromosomal localization of the human uridine nucleotide receptor gene. J Biol Chem 270:30845–30848

    Article  PubMed  CAS  Google Scholar 

  92. North RA (1996) P2X receptors: a third major class of ligand-gated ion channels. Ciba Found Symp 198:91–105

    PubMed  CAS  Google Scholar 

  93. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  94. North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580

    Article  PubMed  CAS  Google Scholar 

  95. Otero M, Garrad RC, Velazquez B, Hernandez-Perez MG, Camden JM et al (2000) Mechanisms of agonist-dependent and -independent desensitization of a recombinant P2Y2 nucleotide receptor. Mol Cell Biochem 205:115–123

    Article  PubMed  CAS  Google Scholar 

  96. Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF (2002) P2X(1)-mediated activation of extracellular signal-regulated kinase 2 contributes to platelet secretion and aggregation induced by collagen. Blood 100:2499–2505

    Article  PubMed  CAS  Google Scholar 

  97. Panenka W, Jijon H, Herx LM, Armstrong JN, Feighan D et al (2001) P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 21:7135–7142

    PubMed  CAS  Google Scholar 

  98. Parr CE, Sullivan DM, Paradiso AM, Lazarowski ER, Burch LH et al (1994) Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci U S A 91:3275–3279

    PubMed  CAS  Google Scholar 

  99. Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278:13309–13317

    Article  PubMed  CAS  Google Scholar 

  100. Pearson PJ, Evora PR, Schaff HV (1992) Bioassay of EDRF from internal mammary arteries: implications for early and late bypass graft patency. Ann Thorac Surg 54:1078–1084

    Article  PubMed  CAS  Google Scholar 

  101. Pearson PJ, Lin PJ, Schaff HV (1992) Global myocardial ischemia and reperfusion impair endothelium-dependent relaxations to aggregating platelets in the canine coronary artery. A possible cause of vasospasm after cardiopulmonary bypass. J Thorac Cardiovasc Surg 103:1147–1154

    PubMed  CAS  Google Scholar 

  102. Qi AD, Kennedy C, Harden TK, Nicholas RA (2001) Differential coupling of the human P2Y(11) receptor to phospholipase C and adenylyl cyclase. Br J Pharmacol 132:318–326

    Article  PubMed  CAS  Google Scholar 

  103. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  104. Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A (1997) The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem 272:5482–5486

    Article  PubMed  CAS  Google Scholar 

  105. Robaye B, Boeynaems JM, Communi D (1997) Slow desensitization of the human P2Y6 receptor. Eur J Pharmacol 329:231–236

    PubMed  CAS  Google Scholar 

  106. Santiago-Perez LI, Flores RV, Santos-Berrios C, Chorna NE, Krugh B et al (2001) P2Y(2) nucleotide receptor signaling in human monocytic cells: activation, desensitization and coupling to mitogen-activated protein kinases. J Cell Physiol 187:196–208

    Article  PubMed  CAS  Google Scholar 

  107. Schafer R, Sedehizade F, Welte T, Reiser G (2003) ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am J Physiol Lung Cell Mol Physiol 285:L376–L385

    PubMed  Google Scholar 

  108. Schrader AM, Camden JM, Weisman GA (2005) P2Y2 nucleotide receptor up-regulation in submandibular gland cells from the NOD.B10 mouse model of Sjogren’s syndrome. Arch Oral Biol 50:533–540

    Article  PubMed  CAS  Google Scholar 

  109. Selbie LA, King NV, Dickenson JM, Hill SJ (1997) Role of G-protein beta gamma subunits in the augmentation of P2Y2 (P2U)receptor-stimulated responses by neuropeptide Y Y1 Gi/o-coupled receptors. Biochem J 328(Pt 1):153–158

    PubMed  CAS  Google Scholar 

  110. Seye CI, Gadeau AP, Daret D, Dupuch F, Alzieu P et al (1997) Overexpression of P2Y2 purinoceptor in intimal lesions of the rat aorta. Arterioscler Thromb Vasc Biol 17:3602–3610

    PubMed  CAS  Google Scholar 

  111. Seye CI, Kong Q, Erb L, Garrad RC, Krugh B et al (2002) Functional P2Y2 nucleotide receptors mediate uridine 5′-triphosphate-induced intimal hyperplasia in collared rabbit carotid arteries. Circulation 106:2720–2726

    Article  PubMed  CAS  Google Scholar 

  112. Seye CI, Yu N, Gonzalez FA, Erb L, Weisman GA (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279:35679–35686

    Article  PubMed  CAS  Google Scholar 

  113. Seye CI, Yu N, Jain R, Kong Q, Minor T et al (2003) The P2Y2 nucleotide receptor mediates UTP-induced vascular cell adhesion molecule-1 expression in coronary artery endothelial cells. J Biol Chem 278:24960–24965

    Article  PubMed  CAS  Google Scholar 

  114. Simon J, Webb TE, King BF, Burnstock G, Barnard EA (1995) Characterisation of a recombinant P2Y purinoceptor. Eur J Pharmacol 291:281–289

    Article  PubMed  CAS  Google Scholar 

  115. Smart ML, Gu B, Panchal RG, Wiley J, Cromer B et al (2003) P2X7 receptor cell surface expression and cytolytic pore formation are regulated by a distal C-terminal region. J Biol Chem 278:8853–8860

    Article  PubMed  CAS  Google Scholar 

  116. Soltoff SP, Avraham H, Avraham S, Cantley LC (1998) Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J Biol Chem 273:2653–2660

    Article  PubMed  CAS  Google Scholar 

  117. Soulet C, Sauzeau V, Plantavid M, Herbert JM, Pacaud P et al (2004) Gi-dependent and -independent mechanisms downstream of the P2Y12 ADP-receptor. J Thromb Haemost 2:135–146

    Article  PubMed  CAS  Google Scholar 

  118. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    PubMed  CAS  Google Scholar 

  119. Swanson KD, Reigh C, Landreth GE (1998) ATP-stimulated activation of the mitogen-activated protein kinases through ionotrophic P2X2 purinoreceptors in PC12 cells. Difference in purinoreceptor sensitivity in two PC12 cell lines. J Biol Chem 273:19965–19971

    Article  PubMed  CAS  Google Scholar 

  120. Tolhurst G, Vial C, Leon C, Gachet C, Evans RJ, Mahaut-Smith MP (2005) Interplay between P2Y(1), P2Y(12), and P2X(1) receptors in the activation of megakaryocyte cation influx currents by ADP: evidence that the primary megakaryocyte represents a fully functional model of platelet P2 receptor signaling. Blood 106:1644–1651

    Article  PubMed  CAS  Google Scholar 

  121. Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98:6951–6956

    Article  PubMed  CAS  Google Scholar 

  122. Tonetti M, Sturla L, Bistolfi T, Benatti U, De Flora A (1994) Extracellular ATP potentiates nitric oxide synthase expression induced by lipopolysaccharide in RAW 264.7 murine macrophages. Biochem Biophys Res Commun 203:430–435

    Article  PubMed  CAS  Google Scholar 

  123. Tonetti M, Sturla L, Giovine M, Benatti U, De Flora A (1995) Extracellular ATP enhances mRNA levels of nitric oxide synthase and TNF-alpha in lipopolysaccharide-treated RAW 264.7 murine macrophages. Biochem Biophys Res Commun 214:125–130

    Article  PubMed  CAS  Google Scholar 

  124. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S et al (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  PubMed  CAS  Google Scholar 

  125. Tu MT, Luo SF, Wang CC, Chien CS, Chiu CT et al (2000) P2Y(2) receptor-mediated proliferation of C(6) glioma cells via activation of Ras/Raf/MEK/MAPK pathway. Br J Pharmacol 129:1481–1489

    Article  PubMed  CAS  Google Scholar 

  126. Turner JT, Weisman GA, Camden JM (1997) Upregulation of P2Y2 nucleotide receptors in rat salivary gland cells during short-term culture. Am J Physiol 273:C1100–C1107

    PubMed  CAS  Google Scholar 

  127. Turner JT, Weisman GA, Landon LA, Park M, Camden JM (1998) Salivary gland nucleotide receptors: evidence for functional expression of both P2X and P2Y subtypes. Eur J Morphol 36(Suppl):170–175

    PubMed  Google Scholar 

  128. Urano T, Nishimori H, Han H, Furuhata T, Kimura Y et al (1997) Cloning of P2XM, a novel human P2X receptor gene regulated by p53. Cancer Res 57:3281–3287

    PubMed  CAS  Google Scholar 

  129. Valera S, Hussy N, Evans RJ, Adami N, North RA et al (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371:516–519

    Article  PubMed  CAS  Google Scholar 

  130. Velazquez B, Garrad RC, Weisman GA, Gonzalez FA (2000) Differential agonist-induced desensitization of P2Y2 nucleotide receptors by ATP and UTP. Mol Cell Biochem 206:75–89

    Article  PubMed  CAS  Google Scholar 

  131. Verhoef PA, Estacion M, Schilling W, Dubyak GR (2003) P2X7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases, and IL-1 beta release. J Immunol 170:5728–5738

    PubMed  CAS  Google Scholar 

  132. Vial C, Rolf MG, Mahaut-Smith MP, Evans RJ (2002) A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br J Pharmacol 135:363–372

    Article  PubMed  CAS  Google Scholar 

  133. Vial C, Tobin AB, Evans RJ (2004) G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation. Biochem J 382:101–110

    Article  PubMed  CAS  Google Scholar 

  134. Virginio C, MacKenzie A, North RA, Surprenant A (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 519(2):335–346

    Article  PubMed  CAS  Google Scholar 

  135. Waldo GL, Harden TK (2004) Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol 65:426–436

    Article  PubMed  CAS  Google Scholar 

  136. Wang M, Kong Q, Gonzalez FA, Sun G, Erb L et al (2005) P2Y nucleotide receptor interaction with alpha integrin mediates astrocyte migration. J Neurochem 95:630–640

    Article  PubMed  CAS  Google Scholar 

  137. Weisman GA, Garrad RC, Erb LJ, Otero M, Gonzalez FA, Clarke LL (1998) Structure and function of P2Y2 nucleotide receptors in cystic fibrosis (CF) epithelium. Adv Exp Med Biol 431:417–424

    PubMed  CAS  Google Scholar 

  138. Welch BD, Carlson NG, Shi H, Myatt L, Kishore BK (2003) P2Y2 receptor-stimulated release of prostaglandin E2 by rat inner medullary collecting duct preparations. Am J Physiol Renal Physiol 285:F711–F721

    PubMed  CAS  Google Scholar 

  139. Werry TD, Christie MI, Dainty IA, Wilkinson GF, Willars GB (2002) Ca(2+) signalling by recombinant human CXCR2 chemokine receptors is potentiated by P2Y nucleotide receptors in HEK cells. Br J Pharmacol 135:1199–1208

    Article  PubMed  CAS  Google Scholar 

  140. White PJ, Kumari R, Porter KE, London NJ, Ng LL, Boarder MR (2000) Antiproliferative effect of UTP on human arterial and venous smooth muscle cells. Am J Physiol Heart Circ Physiol 279:H2735–H2742

    PubMed  CAS  Google Scholar 

  141. White PJ, Webb TE, Boarder MR (2003) Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling. Mol Pharmacol 63:1356–1363

    Article  PubMed  CAS  Google Scholar 

  142. Wilden PA, Agazie YM, Kaufman R, Halenda SP (1998) ATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3K signaling pathways. Am J Physiol 275:H1209–H1215

    PubMed  CAS  Google Scholar 

  143. Wiley JS, Dao-Ung LP, Li C, Shemon AN, Gu BJ et al (2003) An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. J Biol Chem 278:17108–17113

    Article  PubMed  CAS  Google Scholar 

  144. Wilkinson GF, Purkiss JR, Boarder MR (1994) Differential heterologous and homologous desensitization of two receptors for ATP (P2y purinoceptors and nucleotide receptors) coexisting on endothelial cells. Mol Pharmacol 45:731–736

    PubMed  CAS  Google Scholar 

  145. Wilson HL, Wilson SA, Surprenant A, North RA (2002) Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. J Biol Chem 277:34017–34023

    Article  PubMed  CAS  Google Scholar 

  146. Xing M, Post S, Ostrom RS, Samardzija M, Insel PA (1999) Inhibition of phospholipase A2-mediated arachidonic acid release by cyclic AMP defines a negative feedback loop for P2Y receptor activation in Madin-Darby canine kidney D1 cells. J Biol Chem 274:10035–10038

    Article  PubMed  CAS  Google Scholar 

  147. Xu J, Chalimoniuk M, Shu Y, Simonyi A, Sun AY et al (2003) Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot Essent Fat Acids 69:437–448

    Article  CAS  Google Scholar 

  148. Xu J, Weng YI, Simonyi A, Krugh BW, Liao Z et al (2002) Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachadonic acid release in primary murine astrocytes. J Neurochem 83:259–270

    Article  PubMed  CAS  Google Scholar 

  149. Yerxa BR, Sabater JR, Davis CW, Stutts MJ, Lang-Furr M et al (2002) Pharmacology of INS37217 [P(1)-(uridine 5′)-P(4)- (2′-deoxycytidine 5′)tetraphosphate, tetrasodium salt], a next-generation P2Y(2) receptor agonist for the treatment of cystic fibrosis. J Pharmacol Exp Ther 302:871–880

    Article  PubMed  CAS  Google Scholar 

  150. Yoshioka K, Saitoh O, Nakata H (2001) Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci USA 98:7617–7622

    Article  PubMed  CAS  Google Scholar 

  151. Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M et al (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276:8608–8615

    Article  PubMed  CAS  Google Scholar 

  152. Zhang FL, Luo L, Gustafson E, Palmer K, Qiao X et al (2002) P2Y(13): identification and characterization of a novel Galphai-coupled ADP receptor from human and mouse. J Pharmacol Exp Ther 301:705–713

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie Erb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erb, L., Liao, Z., Seye, C.I. et al. P2 receptors: intracellular signaling. Pflugers Arch - Eur J Physiol 452, 552–562 (2006). https://doi.org/10.1007/s00424-006-0069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0069-2

Keywords

Navigation