Skip to main content
Log in

Vacuolar H+-ATPase—an enzyme for all seasons

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The life of every eukaryotic cell depends on the function of vacuolar H+-ATPase (V-ATPase). Because of its complexity and its challenging properties, the study of this enzyme has lagged behind that of its close relative, F-ATPase. We now know that V-ATPase is vital for many more physiological and biochemical processes than anticipated when the enzyme was discovered a few decades ago. It plays a crucial role in the proper functioning of internal organelles such as vacuoles, lysosomes, synaptic vesicles, endosomes, secretory granules, and the Golgi apparatus as well as in plasma membrane of several organisms and specific tissues and specialized cells. Knowledge of its involvement in several diseases, including cancer, has helped to establish the importance of V-ATPase for the preservation of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albright TD, Jessell TM, Kandel ER, Posner MI (2000) Neural science: a century of progress and the mysteries that remain. Cell 100:S1–S55

    Article  PubMed  CAS  Google Scholar 

  2. Anderson RGW, Orci L (1988) A view of acidic intracellular compartments. J Cell Biol 106:539–543

    Article  PubMed  CAS  Google Scholar 

  3. Anraku Y, Umemoto N, Hirata R, Wada Y (1989) Structure and function of the yeast vacuolar membrane proton ATPase. J Bioenerg Biomemb 21:589–603

    Article  CAS  Google Scholar 

  4. Beyenbach KW, Wieczorek H (2005) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    Article  Google Scholar 

  5. Breton S, Brown D (2007) New insights into the regulation of V-ATPase dependent secretion. Am J Physiol Renal Physiol 292:F1–F10

    Article  PubMed  CAS  Google Scholar 

  6. Brown D, Smith PJS, Breton S (1997) Role of V-ATPase-rich cells in acidification of the male reproductive tract. J Exp Biol 200:257–262

    PubMed  CAS  Google Scholar 

  7. Cidon S, Nelson N (1983) A novel ATPase in the chromaffin granule membrane. J Biol Chem 258:2892–2898

    PubMed  CAS  Google Scholar 

  8. Codelia VA, Cortes CJ, Moreno RD (2005) Inhibition of the vacuolar H(+)-pump with bafilomycin A1 does not induce acrosome reaction or activate proacrosin in mouse spermatozoa. Biochem Biophys Res Commun 337:1337–1334

    Article  PubMed  CAS  Google Scholar 

  9. Da Silva N, Shum WWC, Breton S (2007) Regulation of vacuolar proton pumping ATPase-dependent luminal acidification in the epididymis. Asian J Androl 9:476–482

    Article  PubMed  Google Scholar 

  10. Drory O, Nelson N (2006) Structural and function features of yeast VATPase subunit C. Biochim Biophys Acta 1757:297–303

    Article  PubMed  CAS  Google Scholar 

  11. Drory O, Nelson N (2006) The emerging structure of vacuolar ATPase. Physiology 21:317–325

    Article  PubMed  CAS  Google Scholar 

  12. Ehrenfeld J, Klein U (1997) The key role of the H+ V-ATPase in acid–base balance and Na+ transport processes in frog skin. J Exp Biol 200:247–256

    PubMed  CAS  Google Scholar 

  13. Farina C, Gagliardi S (2002) Selective inhibition of osteoclast vacuolar H+-ATPase. Curr Pharm Des 8:2033–2048

    Article  PubMed  CAS  Google Scholar 

  14. Fenwick JC, Wendelaar B, Flik G (1999) In vivo bafilomycin-sensitive Na+ uptake in young freshwater fish. J Exp Biol 202:3659–3666

    PubMed  CAS  Google Scholar 

  15. Fok AK, Aihara MS, Ishida M, Nolta KV, Steck TL, Allen RD (1995) The page on the decorated tubules of the contractile vacuole complex of Paramecium are proton pump. J Cell Sci 108:3163–3170

    PubMed  CAS  Google Scholar 

  16. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    Article  PubMed  CAS  Google Scholar 

  17. Forgac M, Cantly L (1984) Characterization of the ATP-dependent proton pump of clathrin-coated vesicles. J Biol Chem 259:8101–8105

    PubMed  CAS  Google Scholar 

  18. Germanov E, Berman JN, Guernsey DL (2006) Current and future approaches for the therapeutic targeting of metastasis (review). Int J Mol Med 18:1025–1036

    PubMed  CAS  Google Scholar 

  19. Gillies RZ, Liu Z, Bhujwalla Z (1994) P-31-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am J Physiol Cell Physiol 267:C195–C203

    CAS  Google Scholar 

  20. Gruenberg J, Van der Goot FG (2006) Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 7:495–504

    Article  PubMed  CAS  Google Scholar 

  21. Herak-Kramberger CM, Sabolic I, Blanusa M, Smith PJS, Brown D, Breton S (2000) Cadmium inhibits vacuolar H+ ATPase-mediated acidification in the rat epididymis. Biol Reprod 63:599–606

    Article  PubMed  CAS  Google Scholar 

  22. Hermo L, Adamali HI, Andonian S (2000) Immunolocalization of CA II and H+ V-ATPase in epithelial cells of the mouse and rat epididymis. J Androl 21:376–391

    PubMed  CAS  Google Scholar 

  23. Hiesinger PR, Fayyazuddin A, Methta SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao Y, Zhou Y, Kunz J, Bellen HJ (2005) The V-ATPase Vo subunit a1 is required for a late step synaptic vesicle exocytosis in Drosophila. Cell 121:607–620

    Article  PubMed  CAS  Google Scholar 

  24. Horng JL, Lin LY, Huang CJ, Katoh F, Kaneko T, Hwang PP (2007) Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 292:R2068–R2076

    PubMed  CAS  Google Scholar 

  25. Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA, Brown D, Marshansky V (2006) V-ATPase interact with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8:124–136

    Article  PubMed  CAS  Google Scholar 

  26. Israel M, Morel N, Lesbats B, Birman S, Manaranche R (1986) Purification of a presynaptic membrane protein that mediates a calcium-dependent translocation of acetylcholine. Proc Natl Acad Sci U S A 83:9226–9230

    Article  PubMed  CAS  Google Scholar 

  27. Izumi H, Torigoe T, Ishiguchi H, Uramoto H, Yoshida Y, Tanabe M, Ise T, Murkami T, Yoshida Y, Nomoto M, Kohno K (2003) Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev 29:541–549

    Article  PubMed  CAS  Google Scholar 

  28. Kane PM (2006) The where, when and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70:177–191

    Article  PubMed  CAS  Google Scholar 

  29. Kawa G, Yamamoto A, Yoshimori T, Muguruma K, Matsuda T, Moriyama Y (2000) Immunohistochemical localization of V-ATPase in rat spermatids. Int J Androl 23:278–283

    Article  PubMed  CAS  Google Scholar 

  30. Kirschner Lb (2004) The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J Exp Biol 207:1439–1452

    Article  PubMed  CAS  Google Scholar 

  31. Klionsky DJ, Nelson H, Nelson N (1992) Compartment acidification is required for efficient sorting of proteins to the vacuole in Saccharomyces cerevisiae. J Biol Chem 267:3416–3422

    PubMed  CAS  Google Scholar 

  32. Li YP, Chen W, Liang YQ, Li E, Stashenko P (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nature Genet 23:447–451

    Article  PubMed  CAS  Google Scholar 

  33. Lin LY, Horng JL, Kunkel JG, Hwang PP (2006) Proton pump-rich cell is secreting acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290:C371–C378

    Article  PubMed  CAS  Google Scholar 

  34. Marshansky V, Ausiello DA, Brown D (2002) Physiological importance of endosomal acidification: potential role in proximal tubulopathies. Curr Opin Nephrol Hypertens 11:527–537

    Article  PubMed  Google Scholar 

  35. Mcsheehy PMJ, Stubbs M, Griffiths JR (2000) Role of pH in tumor-trapping of the anticancer drug 5-fluorouracil. Adv Enzyme Regul 40:63–80

    Article  PubMed  CAS  Google Scholar 

  36. Mellman I (1996) Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 12:575–625

    Article  PubMed  CAS  Google Scholar 

  37. Melnik VI, Bikbulatova LS, Gulyaeva NV, Bazyan AS (2001) Synaptic vesicle acidification and exocytosis studied with acridine orange fluorescence in rat brain synaptosomes. Neurochem Res 26:549–554

    Article  PubMed  CAS  Google Scholar 

  38. Morel N (2003) Neurotransmitters release: the dark side of the vacuolar-H+ ATPase. Biol Cell 95:453–457

    Article  PubMed  CAS  Google Scholar 

  39. Morel N, Dedieu JC, Phillippe JM (2003) Specific sorting of the a1 isoform of the V-H(+)ATPase a subunit to nerve terminal where it associate with both synaptic vesicles and the presynaptic plasma membrane. J Cell Sci 116:4751–4762

    Article  PubMed  CAS  Google Scholar 

  40. Moriyama Y, Nelson N (1989) Cold inactivation of vacuolar proton-ATPase. J Biol Chem 264:3577–3582

    PubMed  CAS  Google Scholar 

  41. Nelson N (1992) The vacuolar H+-ATPase—one of the most fundamental ion pumps in nature. J Exp Biol 172:19–27

    PubMed  CAS  Google Scholar 

  42. Nelson N (1993) Presynaptic events involved in neurotransmission. J Physiol Paris 87:171–178

    Article  PubMed  CAS  Google Scholar 

  43. Nelson N (2003) A journey from mammals to yeast with vacuolar H ATPase (V-ATPase). J Bioenerg Biomembr 35:281–289

    Article  PubMed  CAS  Google Scholar 

  44. Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosidetriphosphatase. Physiol Rev 79:361–385

    PubMed  CAS  Google Scholar 

  45. Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H (1999) The cellular biology of proton-motive force generated by V-ATPase. J Exp Biol 203:89–95

    Google Scholar 

  46. Niikura K (2007) Effect of a V-ATPase inhibitor, FR202126, in syngeneic mouse model of experimental bone metastasis. Cancer Chemother Pharmacol 60:555–562

    Article  PubMed  CAS  Google Scholar 

  47. Niikura K, Nakajima S, Takano M, Yamazaki H (2007) FR177995, a novel vacuolar ATPase inhibitor, exerts not only an inhibitory effect on bone destruction but also anti-immunoinflammatory effects in adjuvant-induced arthritic rat. Bone 40:888–894

    Article  PubMed  CAS  Google Scholar 

  48. Niikura K, Takano M, Saeada M (2004) A novel inhibitor of vacuolar ATPase, FR167356, which can discriminate between osteoclast vacuolar ATPase and lysosomal vacuolar ATPase. Br J Pharmacol 142:558–566

    Article  PubMed  CAS  Google Scholar 

  49. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPase—nature's most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  PubMed  CAS  Google Scholar 

  50. Ochotny N, Van Vliet A, Chan N, Yao Y, Morel M, Kartner N, von Schroeder HP, Heersche JNM, Manolson MF (2006) Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity. Hum Mol Genet 10:1767–1773

    Google Scholar 

  51. Pastor-Soler N, Pietrement C, Breton S (2005) Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology 20:417–428

    Article  PubMed  CAS  Google Scholar 

  52. Perona R, Serrano R (1988) Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature 334:438–440

    Article  PubMed  CAS  Google Scholar 

  53. Perry SF (1997) The chloride cell: structure and function in the gills of freshwater fishes. Annu Rev Physiol 59:325–347

    Article  PubMed  CAS  Google Scholar 

  54. Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, Mayer A (2001) Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409:581–588

    Article  PubMed  CAS  Google Scholar 

  55. Petrangolini G, Supino R, Pratesi G, Dal Bo L, Tortoreto M, Croce AC, Misiano P, Belfiore P, Farina C, Zunino F (2006) Effect of a novel vacuolar-H+-ATPase inhibitor on cell and tumor response to camptothecins. J Pharmacol Exp Ther 318:939–946

    Article  PubMed  CAS  Google Scholar 

  56. Sagermann M, Stevens TH, Matthews BW (2001) Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 98:7134–7139

    Article  PubMed  CAS  Google Scholar 

  57. Schneider DL (1987) The proton pump ATPase of lysosomes and related organelles of the vacuolar apparatus. Biochim Biophys Acta 895:1–10

    PubMed  CAS  Google Scholar 

  58. Schoonderwoert VTG, Matens GJM (2001) Proton pumping in the secretory pathway. J Membr Biol 182:159–169

    Article  PubMed  CAS  Google Scholar 

  59. Sennoune SR, Bakunts K, Martinez GM, Chua-Tuan JL, Kebir Y, Attaya MN, Martinez-Zaguilan R (2004) Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 286:C1443–C1452

    Article  PubMed  CAS  Google Scholar 

  60. Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al-Sabban EA, Lifton RP, Scherer SW, Karet FE (2000) Mutation in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nature Genet 26:71–75

    Article  PubMed  CAS  Google Scholar 

  61. Stone DK, Xie XS, Racker E (1983) An ATP-driven proton pump in clathrin coated vesicles. J Biol Chem 258:4059–4062

    PubMed  CAS  Google Scholar 

  62. Stvens TH, Forgac M (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol 13:779–808

    Article  Google Scholar 

  63. Sullivan GV, Fryer JN, Perry SF (1995) Immunolocalization of proton pump (H+-ATPase) in pavement cells of rainbow-trout gill. J Exp Biol 198:2619–2629

    PubMed  CAS  Google Scholar 

  64. Sun-Wada GH, Imai-Senga Y, Yamamoto A, Murata Y, Hirata T, Wada Y, Futai M (2002) A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J Biol Chem 277:18098–18105

    Article  PubMed  CAS  Google Scholar 

  65. Sun-Wada GH, Murata Y, Yamamoto A, Kanazawa H, Wada Y, Futai M (2000) Acidic endomembrane organelles are required for mouse postimplantation development. Dev Biol 228:315–325

    Article  PubMed  CAS  Google Scholar 

  66. Sun-Wada GH, Wada Y, Futai M (2004) Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: toward the physiological understanding of inside acidic compartments. Biochim Biophys Acta 1658:106–114

    Article  PubMed  CAS  Google Scholar 

  67. Sun Wada GH, Wasa Y, Futai M (2003) Lysosome and lysosome like organelles responsible for specialized function in higher organisms, with special emphasis on vacuolar-type proton ATPase. Cell Struct Funct 28:455–453

    Article  PubMed  CAS  Google Scholar 

  68. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  PubMed  CAS  Google Scholar 

  69. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  PubMed  CAS  Google Scholar 

  70. Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I (2003) Activation of lysosomal function during dendritic cell maturation. Science 299:1400–1403

    Article  PubMed  CAS  Google Scholar 

  71. Tulsiani DRP, Abou-Haila A, Loeser CR, Pereira MJ (1998) The biological and functional significance of the sperm acrosome and acrosomal enzymes in mammalian fertilization. Exp Cell Res 240:151–164

    Article  PubMed  CAS  Google Scholar 

  72. Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2003) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314

    Article  Google Scholar 

  73. Wieczorek H, Putzenlechner M, Zeiske W, Klein U (1991) A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane. J Biol Chem 266:15340–15347

    PubMed  CAS  Google Scholar 

  74. Yao GF, Feng HT, Cai YL, Qi W, Kong KM (2007) Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts. Biochem Biophys Res Commun 357:821–827

    Article  PubMed  CAS  Google Scholar 

  75. Zheng XY, Spaeth DD, Harvey WR, Wolfersberger MG (1992) Dicyclohexylcarbodiimide reacts specifically with the 16 kDa subunit of larval Manduca sexta midgut vacuolar-type ATPase. J Exp Biol 165:273–278

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saroussi, S., Nelson, N. Vacuolar H+-ATPase—an enzyme for all seasons. Pflugers Arch - Eur J Physiol 457, 581–587 (2009). https://doi.org/10.1007/s00424-008-0458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0458-9

Keywords

Navigation