Skip to main content

Advertisement

Log in

Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney

  • Molecular and Genomic Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Endocytic receptors in the proximal tubule of the mammalian kidney are responsible for the reuptake of numerous ligands, including lipoproteins, sterols, vitamin-binding proteins, and hormones, and they can mediate drug-induced nephrotoxicity. In this paper, we report the first evidence indicating that the pronephric kidneys of Xenopus tadpoles are capable of endocytic transport. We establish that the Xenopus genome harbors genes for the known three endocytic receptors megalin/LRP2, cubilin, and amnionless. The Xenopus endocytic receptor genes share extensive synteny with their mammalian counterparts. In situ hybridizations demonstrated that endocytic receptor expression is highly tissue specific, primarily in the pronephric kidney, and did not occur prior to neurulation. Expression was strictly confined to proximal tubules of the pronephric kidney, which closely resembles the situation reported in mammalian kidneys. By immunohistochemistry, we demonstrated that Xenopus pronephric tubule epithelia express high amounts of the endocytic receptors megalin/lrp2 and cubilin in the apical plasma membrane. Furthermore, functional aspects of the endocytic receptors were revealed by the vesicular localization of retinol-binding protein in the proximal tubules, probably representing endocytosed protein. In summary, we provide here the first comprehensive report of endocytic receptor expression, including amnionless, in a nonmammalian species. Remarkably, renal endocytic receptor expression and function in the Xenopus pronephric kidney closely mirrors the situation in the mammalian kidney. The Xenopus pronephric kidney therefore represents a novel, simple model for physiological studies on the molecular mechanisms underlying renal tubular endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saxén L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge, UK

    Google Scholar 

  2. Brändli AW (1999) Towards a molecular anatomy of the Xenopus pronephric kidney. Int J Dev Biol 43:381–395

    PubMed  Google Scholar 

  3. Vize PD, Seufert DW, Carroll TJ, Wallingford JB (1997) Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev Biol 188:189–204

    Article  PubMed  CAS  Google Scholar 

  4. Brändli AW (2004) Prospects for the Xenopus embryo model in therapeutics technologies. Chimia 58:695–702

    Google Scholar 

  5. Jones EA (2005) Xenopus: a prince among models for pronephric kidney development. J Am Soc Nephrol 16:313–321

    Article  PubMed  CAS  Google Scholar 

  6. McLaughlin KA, Rones MS, Mercola M (2000) Notch regulates cell fate in the developing pronephros. Dev Biol 227:567–580

    Article  PubMed  CAS  Google Scholar 

  7. Reggiani L, Raciti D, Airik R, Kispert A, Brändli AW (2007) The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 21:2358–2370

    Article  PubMed  CAS  Google Scholar 

  8. Saulnier DM, Ghanbari H, Brändli AW (2002) Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. Dev Biol 248:13–28

    Article  PubMed  CAS  Google Scholar 

  9. Tran U, Pickney LM, Ozpolat BD, Wessely O (2007) Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. Dev Biol 307:152–164

    Article  PubMed  CAS  Google Scholar 

  10. Urban AE, Zhou X, Ungos JM, Raible DW, Altmann CR, Vize PD (2006) FGF is essential for both condensation and mesenchymal–epithelial transition stages of pronephric kidney tubule development. Dev Biol 297:103–117

    Article  PubMed  CAS  Google Scholar 

  11. Howland RB (1916) On the effect of removal of the pronephros of the amphibian embryo. Proc Natl Acad Sci USA 2:231–234

    Article  PubMed  CAS  Google Scholar 

  12. Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266

    PubMed  CAS  Google Scholar 

  13. Anzenberger U, Bit-Avragim N, Rohr S, Rudolph F, Dehmel B, Willnow TE, Abdelilah-Seyfried S (2006) Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros. J Cell Sci 119:2127–2137

    Article  PubMed  CAS  Google Scholar 

  14. Christensen EI, Willnow TE (1999) Essential role of megalin in renal proximal tubule for vitamin homeostasis. J Am Soc Nephrol 10:2224–2236

    PubMed  CAS  Google Scholar 

  15. Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen EI, Willnow TE (1999) An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96:507–515

    Article  PubMed  CAS  Google Scholar 

  16. Nykjaer A, Fyfe JC, Kozyraki R, Leheste JR, Jacobsen C, Nielsen MS, Verroust PJ, Aminoff M, de la Chapelle A, Moestrup SK, Ray R, Gliemann J, Willnow TE, Christensen EI (2001) Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D(3). Proc Natl Acad Sci USA 98:13895–13900

    Article  PubMed  CAS  Google Scholar 

  17. Birn H, Verroust PJ, Nexo E, Hager H, Jacobsen C, Christensen EI, Moestrup SK (1997) Characterization of an epithelial approximately 460-kDa protein that facilitates endocytosis of intrinsic factor-vitamin B12 and binds receptor-associated protein. J Biol Chem 272:26497–26504

    Article  PubMed  CAS  Google Scholar 

  18. Kozyraki R, Fyfe J, Verroust PJ, Jacobsen C, Dautry-Varsat A, Gburek J, Willnow TE, Christensen EI, Moestrup SK (2001) Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. Proc Natl Acad Sci USA 98:12491–12496

    Article  PubMed  CAS  Google Scholar 

  19. Birn H, Vorum H, Verroust PJ, Moestrup SK, Christensen EI (2000) Receptor-associated protein is important for normal processing of megalin in kidney proximal tubules. J Am Soc Nephrol 11:191–202

    PubMed  CAS  Google Scholar 

  20. Cui S, Verroust PJ, Moestrup SK, Christensen EI (1996) Megalin/gp330 mediates uptake of albumin in renal proximal tubule. Am J Physiol 271:F900–F907

    PubMed  Google Scholar 

  21. Zhai XY, Nielsen R, Birn H, Drumm K, Mildenberger S, Freudinger R, Moestrup SK, Verroust PJ, Christensen EI, Gekle M (2000) Cubilin- and megalin-mediated uptake of albumin in cultured proximal tubule cells of opossum kidney. Kidney Int 58:1523–1533

    Article  PubMed  CAS  Google Scholar 

  22. Moestrup SK, Cui S, Vorum H, Bregengard C, Bjorn SE, Norris K, Gliemann J, Christensen EI (1995) Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J Clin Invest 96:1404–1413

    Article  PubMed  CAS  Google Scholar 

  23. Schmitz C, Hilpert J, Jacobsen C, Boensch C, Christensen EI, Luft FC, Willnow TE (2002) Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem 277:618–622

    Article  PubMed  CAS  Google Scholar 

  24. Hammad SM, Barth JL, Knaak C, Argraves WS (2000) Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins. J Biol Chem 275:12003–12008

    Article  PubMed  CAS  Google Scholar 

  25. Moestrup SK, Kozyraki R, Kristiansen M, Kaysen JH, Rasmussen HH, Brault D, Pontillon F, Goda FO, Christensen EI, Hammond TG, Verroust PJ (1998) The intrinsic factor-vitamin B12 receptor and target of teratogenic antibodies is a megalin-binding peripheral membrane protein with homology to developmental proteins. J Biol Chem 273:5235–5242

    Article  PubMed  CAS  Google Scholar 

  26. Coudroy G, Gburek J, Kozyraki R, Madsen M, Trugnan G, Moestrup SK, Verroust PJ, Maurice M (2005) Contribution of cubilin and amnionless to processing and membrane targeting of cubilin–amnionless complex. J Am Soc Nephrol 16:2330–2337

    Article  PubMed  CAS  Google Scholar 

  27. Fyfe JC, Madsen M, Hojrup P, Christensen EI, Tanner SM, de la Chapelle A, He Q, Moestrup SK (2004) The functional cobalamin (vitamin B12)-intrinsic factor receptor is a novel complex of cubilin and amnionless. Blood 103:1573–1579

    Article  PubMed  CAS  Google Scholar 

  28. He Q, Madsen M, Kilkenney A, Gregory B, Christensen EI, Vorum H, Hojrup P, Schaffer AA, Kirkness EF, Tanner SM, de la Chapelle A, Giger U, Moestrup SK, Fyfe JC (2005) Amnionless function is required for cubilin brush-border expression and intrinsic factor-cobalamin (vitamin B12) absorption in vivo. Blood 106:1447–1453

    Article  PubMed  CAS  Google Scholar 

  29. Strope S, Rivi R, Metzger T, Manova K, Lacy E (2004) Mouse amnionless, which is required for primitive streak assembly, mediates cell-surface localization and endocytic function of cubilin on visceral endoderm and kidney proximal tubules. Development 131:4787–4795

    Article  PubMed  CAS  Google Scholar 

  30. Willnow TE, Hilpert J, Armstrong SA, Rohlmann A, Hammer RE, Burns DK, Herz J (1996) Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci USA 93:8460–8464

    Article  PubMed  CAS  Google Scholar 

  31. Gburek J, Birn H, Verroust PJ, Goj B, Jacobsen C, Moestrup SK, Willnow TE, Christensen EI (2003) Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin. Am J Physiol Renal Physiol 285:F451–458

    PubMed  Google Scholar 

  32. Leheste JR, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Muller I, Andreassen TT, Wolf E, Bachmann S, Nykjaer A, Willnow TE (2003) Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J 17:247–249

    PubMed  CAS  Google Scholar 

  33. Kantarci S, Al-Gazali L, Hill RS, Donnai D, Black GC, Bieth E, Chassaing N, Lacombe D, Devriendt K, Teebi A, Loscertales M, Robson C, Liu T, MacLaughlin DT, Noonan KM, Russell MK, Walsh CA, Donahoe PK, Pober BR (2007) Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai–Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 39:957–959

    Article  PubMed  CAS  Google Scholar 

  34. Fyfe JC, Giger U, Hall CA, Jezyk PF, Klumpp SA, Levine JS, Patterson DF (1991) Inherited selective intestinal cobalamin malabsorption and cobalamin deficiency in dogs. Pediatr Res 29:24–31

    Article  PubMed  CAS  Google Scholar 

  35. Birn H, Fyfe JC, Jacobsen C, Mounier F, Verroust PJ, Orskov H, Willnow TE, Moestrup SK, Christensen EI (2000) Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest 105:1353–1361

    Article  PubMed  CAS  Google Scholar 

  36. Aminoff M, Carter JE, Chadwick RB, Johnson C, Grasbeck R, Abdelaal MA, Broch H, Jenner LB, Verroust PJ, Moestrup SK, de la Chapelle A, Krahe R (1999) Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat Genet 21:309–313

    Article  PubMed  CAS  Google Scholar 

  37. Tanner SM, Li Z, Bisson R, Acar C, Oner C, Oner R, Cetin M, Abdelaal MA, Ismail EA, Lissens W, Krahe R, Broch H, Grasbeck R, de la Chapelle A (2004) Genetically heterogeneous selective intestinal malabsorption of vitamin B12: founder effects, consanguinity, and high clinical awareness explain aggregations in Scandinavia and the Middle East. Hum Mutat 23:327–333

    Article  PubMed  CAS  Google Scholar 

  38. Vize PD, Woolf AS, Bard JBL (2003) The kidney: from normal development to congenital disease. Academic, San Diego

    Google Scholar 

  39. Eid SR, Terrettaz A, Nagata K, Brändli AW (2002) Embryonic expression of Xenopus SGLT-1L, a novel member of the solute carrier family 5 (SLC5), is confined to tubules of the pronephric kidney. Int J Dev Biol 46:177–184

    PubMed  CAS  Google Scholar 

  40. Zhou X, Vize PD (2004) Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules. Dev Biol 271:322–338

    Article  PubMed  CAS  Google Scholar 

  41. Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  42. Brändli AW, Kirschner MW (1995) Molecular cloning of tyrosine kinases in the early Xenopus embryo: identification of Eck-related genes expressed in cranial neural crest cells of the second (hyoid) arch. Dev Dyn 203:119–140

    PubMed  Google Scholar 

  43. Helbling PM, Tran CT, Brändli AW (1998) Requirement for EphA receptor signaling in the segregation of Xenopus third and fourth arch neural crest cells. Mech Dev 78:63–79

    Article  PubMed  CAS  Google Scholar 

  44. Helbling PM, Saulnier DM, Robinson V, Christiansen JH, Wilkinson DG, Brändli AW (1999) Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin-B ligands. Dev Dyn 216:361–373

    Article  PubMed  CAS  Google Scholar 

  45. Christensen EI, Nielsen S, Moestrup SK, Borre C, Maunsbach AB, de Heer E, Ronco P, Hammond TG, Verroust P (1995) Segmental distribution of the endocytosis receptor gp330 in renal proximal tubules. Eur J Cell Biol 66:349–364

    PubMed  CAS  Google Scholar 

  46. Moestrup SK, Nielsen S, Andreasen P, Jorgensen KE, Nykjaer A, Roigaard H, Gliemann J, Christensen EI (1993) Epithelial glycoprotein-330 mediates endocytosis of plasminogen activator–plasminogen activator inhibitor type-1 complexes. J Biol Chem 268:16564–16570

    PubMed  CAS  Google Scholar 

  47. Sahali D, Mulliez N, Chatelet F, Laurent-Winter C, Citadelle D, Sabourin JC, Roux C, Ronco P, Verroust P (1993) Comparative immunochemistry and ontogeny of two closely related coated pit proteins. The 280-kD target of teratogenic antibodies and the 330-kD target of nephritogenic antibodies. Am J Pathol 142:1654–1667

    PubMed  CAS  Google Scholar 

  48. Bork P, Beckmann G (1993) The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol 231:539–545

    Article  PubMed  CAS  Google Scholar 

  49. Romero A, Romao MJ, Varela PF, Kolln I, Dias JM, Carvalho AL, Sanz L, Topfer-Petersen E, Calvete JJ (1997) The crystal structures of two spermadhesins reveal the CUB domain fold. Nat Struct Biol 4:783–788

    Article  PubMed  CAS  Google Scholar 

  50. Kozyraki R, Kristiansen M, Silahtaroglu A, Hansen C, Jacobsen C, Tommerup N, Verroust PJ, Moestrup SK (1998) The human intrinsic factor-vitamin B12 receptor, cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region. Blood 91:3593–3600

    PubMed  CAS  Google Scholar 

  51. Hjalm G, Murray E, Crumley G, Harazim W, Lundgren S, Onyango I, Ek B, Larsson M, Juhlin C, Hellman P, Davis H, Akerstrom G, Rask L, Morse B (1996) Cloning and sequencing of human gp330, a Ca(2+)-binding receptor with potential intracellular signaling properties. Eur J Biochem 239:132–137

    Article  PubMed  CAS  Google Scholar 

  52. Saito A, Pietromonaco S, Loo AK, Farquhar MG (1994) Complete cloning and sequencing of rat gp330/“megalin,” a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci USA 91:9725–9729

    Article  PubMed  CAS  Google Scholar 

  53. Kalantry S, Manning S, Haub O, Tomihara-Newberger C, Lee HG, Fangman J, Disteche CM, Manova K, Lacy E (2001) The amnionless gene, essential for mouse gastrulation, encodes a visceral-endoderm-specific protein with an extracellular cysteine-rich domain. Nat Genet 27:412–416

    Article  PubMed  CAS  Google Scholar 

  54. Kopczynski CC, Noordermeer JN, Serano TL, Chen WY, Pendleton JD, Lewis S, Goodman CS, Rubin GM (1998) A high throughput screen to identify secreted and transmembrane proteins involved in Drosophila embryogenesis. Proc Natl Acad Sci USA 95:9973–9978

    Article  PubMed  CAS  Google Scholar 

  55. Hedges SB, Kumar S (2002) Genomics vertebrate genomes compared. Science 297:1283–1285

    Article  PubMed  CAS  Google Scholar 

  56. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    Article  PubMed  CAS  Google Scholar 

  57. Maunsbach AB, Christensen EI (1992) Functional ultrastructure of the proximal tubule. In Handbook of Physiology. Renal Physiology. Section 8 (Renal Physiology, vol. I), edited by EE Windhager. Oxford University Press, New York pp. 41–107

  58. Christensen EI, Moskaug JO, Vorum H, Jacobsen C, Gundersen TE, Nykjaer A, Blomhoff R, Willnow TE, Moestrup SK (1999) Evidence for an essential role of megalin in transepithelial transport of retinol. J Am Soc Nephrol 10:685–695

    PubMed  CAS  Google Scholar 

  59. Smith BT, Mussell JC, Fleming PA, Barth JL, Spyropoulos DD, Cooley MA, Drake CJ, Argraves WS (2006) Targeted disruption of cubilin reveals essential developmental roles in the structure and function of endoderm and in somite formation. BMC Dev Biol 6:30

    Article  PubMed  Google Scholar 

  60. Tanner SM, Aminoff M, Wright FA, Liyanarachchi S, Kuronen M, Saarinen A, Massika O, Mandel H, Broch H, de la Chapelle A (2003) Amnionless, essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anemia. Nat Genet 33:426–429

    Article  PubMed  CAS  Google Scholar 

  61. Drake CJ, Fleming PA, Larue AC, Barth JL, Chintalapudi MR, Argraves WS (2004) Differential distribution of cubilin and megalin expression in the mouse embryo. Anat Rec A Discov Mol Cell Evol Biol 277:163–170

    Article  PubMed  Google Scholar 

  62. Assemat E, Chatelet F, Chandellier J, Commo F, Cases O, Verroust P, Kozyraki R (2005) Overlapping expression patterns of the multiligand endocytic receptors cubilin and megalin in the CNS, sensory organs and developing epithelia of the rodent embryo. Gene Expr Patterns 6:69–78

    Article  PubMed  CAS  Google Scholar 

  63. Kounnas MZ, Haudenschild CC, Strickland DK, Argraves WS (1994) Immunological localization of glycoprotein 330, low density lipoprotein receptor related protein and 39 kDa receptor associated protein in embryonic mouse tissues. In Vivo 8:343–351

    PubMed  CAS  Google Scholar 

  64. McCarthy RA, Barth JL, Chintalapudi MR, Knaak C, Argraves WS (2002) Megalin functions as an endocytic sonic hedgehog receptor. J Biol Chem 277:25660–25667

    Article  PubMed  CAS  Google Scholar 

  65. Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Garland, New York

    Google Scholar 

  66. Wingert RA, Selleck R, Yu J, Song HD, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP, Davidson AJ (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hanne Sidelmann and Inger Kristoffersen for skilful technical assistance. The work was supported in part by the Danish Medical Research Council, the University of Aarhus, the NOVO-Nordisk Foundation, and the Biomembrane Research Center to EIC, the ETH Zürich and the Swiss National Science Foundation (3100A0-101964) to AWB, and the European Community (EuReGene LSHG-CT-2004-005085) to EIC, PJV, and AWB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erik I. Christensen or André W. Brändli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(PDF 4 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, E.I., Raciti, D., Reggiani, L. et al. Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney. Pflugers Arch - Eur J Physiol 456, 1163–1176 (2008). https://doi.org/10.1007/s00424-008-0488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0488-3

Keywords

Navigation