Skip to main content
Log in

Kiss-and-run exocytosis and fusion pores of secretory vesicles in human β-cells

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Exocytosis of secretory vesicles results in the release of insulin from pancreatic β-cells, although little is known about this process in humans. We examined the exocytosis of single secretory vesicles and their associated fusion pores in human β-cells by cell-attached capacitance and conductance measurement. Unitary capacitance steps were observed, consistent with the exocytosis of single secretory vesicles. These were often coincident with increases in patch conductance representing the presence of a stable fusion pore. In some events, the fusion pore closed, mediating kiss-and-run, which contributed 20% of the exocytotic events. The cAMP-raising agent forskolin (5 μM) doubled the relative contribution of kiss-and-run. This effect was confirmed visually in MIN6 cells expressing a fluorescent granule probe. Thus, we demonstrate the unitary capacitance steps and fusion pores during single vesicle exocytosis in human β-cells. Furthermore, these secretory vesicles can undergo rapid recycling by kiss-and-run, and this process is up-regulated by cAMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacDonald PE, Rorsman P (2007) The ins and outs of secretion from pancreatic β-cells: control of single-vesicle exo- and endocytosis. Physiology (Bethesda) 22:113–121

    CAS  Google Scholar 

  2. Takahashi N, Kishimoto T, Nemoto T, Kadowaki T, Kasai H (2002) Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 297:1349–1352

    Article  PubMed  CAS  Google Scholar 

  3. Ma L, Bindokas VP, Kuznetsov A, Rhodes C, Hays L, Edwardson JM, Ueda K, Steiner DF, Philipson LH (2004) Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion. Proc Natl Acad Sci USA 101:9266–9271

    Article  PubMed  CAS  Google Scholar 

  4. Barg S, Olofsson CS, Schriever-Abeln J, Wendt A, Gebre-Medhin S, Renstrom E, Rorsman P (2002) Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33:287–299

    Article  PubMed  CAS  Google Scholar 

  5. Tsuboi T, Rutter GA (2003) Multiple forms of “kiss-and-run” exocytosis revealed by evanescent wave microscopy. Curr Biol 13:563–567

    Article  PubMed  CAS  Google Scholar 

  6. Tsuboi T, McMahon HT, Rutter GA (2004) Mechanisms of dense core vesicle recapture following “kiss and run” (“cavicapture”) exocytosis in insulin-secreting cells. J Biol Chem 279:47115–47124

    Article  PubMed  CAS  Google Scholar 

  7. Obermuller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S (2005) Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 118:4271–4282

    Article  PubMed  CAS  Google Scholar 

  8. MacDonald PE, Braun M, Galvanovskis J, Rorsman P (2006) Release of small transmitters through kiss-and-run fusion pores in rat pancreatic β cells. Cell Metab 4:283–290

    Article  PubMed  CAS  Google Scholar 

  9. Gromada J, Ding WG, Barg S, Renstrom E, Rorsman P (1997) Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Arch 434:515–524

    Article  PubMed  CAS  Google Scholar 

  10. Gromada J, Brock B, Schmitz O, Rorsman P (2004) Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin Pharmacol Toxicol 95:252–262

    Article  PubMed  CAS  Google Scholar 

  11. Seino S, Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85:1303–1342

    Article  PubMed  CAS  Google Scholar 

  12. Wang CT, Lu JC, Bai J, Chang PY, Martin TF, Chapman ER, Jackson MB (2003) Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424:943–947

    Article  PubMed  CAS  Google Scholar 

  13. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  CAS  Google Scholar 

  14. Weibel ER, Bolender RP (1973) Stereological techniques for electron microscopic morphometry. In: Hayat MA (ed) Principles and Techniques of Electron Microscopy, Chapter 6. Van Nostrand Reinhold Company, New York, pp 237–296

  15. Debus K, Lindau M (2000) Resolution of patch capacitance recordings and of fusion pore conductances in small vesicles. Biophys J 78:2983–2997

    Article  PubMed  CAS  Google Scholar 

  16. Gopel S, Kanno T, Barg S, Galvanovskis J, Rorsman P (1999) Voltage-gated and resting membrane currents recorded from β-cells in intact mouse pancreatic islets. J Physiol 521:717–728

    Article  PubMed  CAS  Google Scholar 

  17. MacDonald PE, Obermuller S, Vikman J, Galvanovskis J, Rorsman P, Eliasson L (2005) Regulated exocytosis and kiss-and-run of synaptic-like microvesicles in INS-1 and primary rat β-cells. Diabetes 54:736–743

    Article  PubMed  CAS  Google Scholar 

  18. Bowser DN, Khakh BS (2007) Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci USA 104:4212–4217

    Article  PubMed  CAS  Google Scholar 

  19. Hutton JC (1989) The insulin secretory granule. Diabetologia 32:271–281

    Article  PubMed  CAS  Google Scholar 

  20. Braun M, Wendt A, Birnir B, Broman J, Eliasson L, Galvanovskis J, Gromada J, Mulder H, Rorsman P (2004) Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic β-cells. J Gen Physiol 123:191–204

    Article  PubMed  CAS  Google Scholar 

  21. Kwan EP, Gaisano HY (2005) Glucagon-like peptide 1 regulates sequential and compound exocytosis in pancreatic islet beta-cells. Diabetes 54:2734–2743

    Article  PubMed  CAS  Google Scholar 

  22. Lindau M, Alvarez de Toledo G (2003) The fusion pore. Biochim Biophys Acta 1641:167–173

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Z, Jackson MB (2008) Temperature dependence of fusion kinetics and fusion pores in Ca2+-triggered exocytosis from PC12 cells. J Gen Physiol 131:117–124

    Article  PubMed  Google Scholar 

  24. Michael DJ, Ritzel RA, Haataja L, Chow RH (2006) Pancreatic β-cells secrete insulin in fast- and slow-release forms. Diabetes 55:600–607

    Article  PubMed  CAS  Google Scholar 

  25. Tsuboi T, da Silva Xavier G, Leclerc I, Rutter GA (2003) 5′-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics. J Biol Chem 278:52042–52051

    Article  PubMed  CAS  Google Scholar 

  26. Ales E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez dT (1999) High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat Cell Biol 1:40–44

    Article  PubMed  CAS  Google Scholar 

  27. Elhamdani A, Azizi F, Artalejo CR (2006) Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J Neurosci 26:3030–3036

    Article  PubMed  CAS  Google Scholar 

  28. Matthias K, Seifert G, Reinhardt S, Steinhauser C (2002) Modulation of voltage-gated K+ channels Kv11 and Kv1 4 by forskolin. Neuropharmacology 43:444–449

    Article  PubMed  CAS  Google Scholar 

  29. Hatakeyama H, Takahashi N, Kishimoto T, Nemoto T, Kasai H (2007) Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse β-cells. J Physiol 582:1087–1098

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Nancy Smith for technical assistance. This work was supported by grants to PEM from the Canadian Institutes of Health Research (MOP 81350), the Canada Foundation for Innovation, and the Alberta Heritage Foundation for Medical Research (AHFMR). Work in Oxford was supported by the Wellcome Trust UK. PEM is an AHFMR and Canadian Diabetes Association Scholar and holds the Canada Research Chair in Islet Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick E. MacDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanna, S.T., Pigeau, G.M., Galvanovskis, J. et al. Kiss-and-run exocytosis and fusion pores of secretory vesicles in human β-cells. Pflugers Arch - Eur J Physiol 457, 1343–1350 (2009). https://doi.org/10.1007/s00424-008-0588-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0588-0

Keywords

Navigation