Skip to main content
Log in

The interaction of carbon dioxide and hypoxia in the control of cerebral blood flow

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 08 December 2012

Abstract

Both hypoxia and carbon dioxide increase cerebral blood flow (CBF), and their effective interaction is currently thought to be additive. Our objective was to test this hypothesis. Eight healthy subjects breathed a series of progressively hypoxic gases at three levels of carbon dioxide. Middle cerebral artery velocity, as an index of CBF; partial pressures of carbon dioxide and oxygen and concentration of oxygen in arterial blood; and mean arterial blood pressure were monitored. The product of middle cerebral artery velocity and arterial concentration of oxygen was used as an index of cerebral oxygen delivery. Two-way repeated measures analyses of variance (rmANOVA) found a significant interaction of carbon dioxide and hypoxia factors for both CBF and cerebral oxygen delivery. Regression models using sigmoidal dependence on carbon dioxide and a rectangular hyperbolic dependence on hypoxia were fitted to the data to illustrate this interaction. We concluded that carbon dioxide and hypoxia act synergistically in their control of CBF so that the delivery of oxygen to the brain is enhanced during hypoxic hypercapnia and, although reduced during normoxic hypocapnia, can be restored to normal levels with progressive hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ainslie PN, Burgess KR (2008) Cardiorespiratory and cerebrovascular responses to hyperoxic and hypoxic rebreathing: effects of acclimatization to high altitude. Respir Physiol Neurobiol 161:201–209

    Article  PubMed  Google Scholar 

  2. Ainslie PN, Poulin MJ (2004) Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol 97:149–159

    Article  PubMed  Google Scholar 

  3. Ainslie PN, Tzeng YC (2010) On the regulation of the blood supply to the brain: old age concepts and new age ideas. J Appl Physiol 108:1447–1449

    Article  PubMed  CAS  Google Scholar 

  4. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2011) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  Google Scholar 

  5. Battisti-Charbonney A, Fisher J, Duffin J (2011) The cerebrovascular response to carbon dioxide in humans. J Physiol 589:3039–3048

    Article  PubMed  CAS  Google Scholar 

  6. Battisti-Charbonney A, Fisher JA, Duffin J (2011) Respiratory, cerebrovascular and cardiovascular responses to isocapnic hypoxia. Respir Physiol Neurobiol 179:259–268

    Article  PubMed  CAS  Google Scholar 

  7. Brown MM, Wade JP, Marshall J (1985) Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain 108(Pt 1):81–93

    Article  PubMed  Google Scholar 

  8. Cohen PJ, Alexander SC, Smith TC, Reivich M, Wollman H (1967) Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J Appl Physiol 23:183–189

    PubMed  CAS  Google Scholar 

  9. Dahl A, Lindegaard KF, Russell D, Nyberg-Hansen R, Rootwelt K, Sorteberg W, Nornes H (1992) A comparison of transcranial Doppler and cerebral blood flow studies to assess cerebral vasoreactivity. Stroke 23:15–19

    Article  PubMed  CAS  Google Scholar 

  10. Duffin J (2007) Measuring the ventilatory response to hypoxia. J Physiol 584:285–293

    Article  PubMed  CAS  Google Scholar 

  11. Fortune JB, Bock D, Kupinski AM, Stratton HH, Shah DM (1992) Human cerebrovascular response to oxygen and carbon dioxide as determined by internal carotid artery duplex scanning. J Trauma 32:618–627

    Article  PubMed  CAS  Google Scholar 

  12. Giller CA (2003) The emperor has no clothes: velocity, flow, and the use of TCD. J Neuroimaging 13:97–98

    PubMed  Google Scholar 

  13. Gordon GRJ, Howarth C, MacVicar BA (2011) Bidirectional control of arteriole diameter by astrocytes. Exptl Physiol 96:393–399

    Article  CAS  Google Scholar 

  14. Grote J, Kreuscher H, Vaupel P, Gunther H (1971) The influence of reduced PaO 2 during respiratory and nonrespiratory acidosis on cerebral oxygen supply and cerebral metabolism. Eur Neurol 6:335–339

    Article  PubMed  Google Scholar 

  15. Gupta AK, Menon DK, Czosnyka M, Smielewski P, Jones JG (1997) Thresholds for hypoxic cerebral vasodilation in volunteers. Anesth Analg 85:817–820

    PubMed  CAS  Google Scholar 

  16. Haggendal E, Winso I (1975) The influence of arterial carbon dioxide tension on the cerebrovascular response to arterial hypoxia and to haemodilution. Acta Anaesthesiol Scand 19:134–145

    Article  PubMed  CAS  Google Scholar 

  17. Haggendal E, Nilsson NJ, Norback B (1969) Aspects of the autoregulation of cerebral blood flow. Int Anesthesiol Clin 7:353–367

    Article  PubMed  CAS  Google Scholar 

  18. Hill MA, Davis MJ, Meininger GA, Potocnik SJ, Murphy TV (2006) Arteriolar myogenic signalling mechanisms: implications for local vascular function. Clin Hemorheol Microcirc 34:67–79

    PubMed  Google Scholar 

  19. Jansen GF, Kagenaar DA, Basnyat B, Odoom JA (2002) Basilar artery blood flow velocity and the ventilatory response to acute hypoxia in mountaineers. Respir Physiol Neurobiol 133:65–74

    Article  PubMed  Google Scholar 

  20. Kety SS, Schmidt CF (1948) The effects of altered arterial tension of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal men. J Clin Invest 27:484–492

    Article  PubMed  CAS  Google Scholar 

  21. Kogure K, Scheinberg P, Reinmuth OM, Fujishima M, Busto R (1970) Regional cerebral blood flow in dogs. Local and remote effect of carbon dioxide. Arch Neurol 22:528–540

    Article  PubMed  CAS  Google Scholar 

  22. Kontos HA, Wei EP, Raper AJ, Patterson JL Jr (1977) Local mechanism of CO2 action of cat pial arterioles. Stroke 8:226–229

    Article  PubMed  CAS  Google Scholar 

  23. Lassen NA (1968) Brain extracellular pH: the main factor controlling cerebral blood flow. Scand J Clin Lab Invest 22:247–251

    Article  PubMed  CAS  Google Scholar 

  24. Lassen NA (1982) Measurement of cerebral blood flow and metabolism in man. Clin Sci (Lond) 62:567–572

    CAS  Google Scholar 

  25. Lennox WG, Gibbs EL (1932) The blood flow in the brain and the leg of man, and the changes induced by alteration of blood gases. J Clin Invest 11:1155–1177

    Article  PubMed  CAS  Google Scholar 

  26. Lucas SJ, Tzeng YC, Galvin SD, Thomas KN, Ogoh S, Ainslie PN (2010) Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension 55:698–705

    Article  PubMed  CAS  Google Scholar 

  27. Mark CI, Slessarev M, Ito S, Han J, Fisher JA, Pike GB (2010) Precise control of end-tidal carbon dioxide and oxygen improves BOLD and ASL cerebrovascular reactivity measures. Magn Reson Med 64:749–756

    Article  PubMed  Google Scholar 

  28. Paulson OB, Parving HH, Olesen J, Skinhoj E (1973) Influence of carbon monoxide and of hemodilution on cerebral blood flow and blood gases in man. J Appl Physiol 35:111–116

    PubMed  CAS  Google Scholar 

  29. Poulin MJ, Robbins PA (1995) Changes in blood flow in the middle cerebral artery in response to acute isocapnic hypoxia in humans. Adv Exper Med Biol 393:287–292

    Article  CAS  Google Scholar 

  30. Poulin MJ, Liang PJ, Robbins PA (1996) Dynamics of the cerebral blood flow response to step changes in end-tidal PCO2 and PO2 in humans. J Appl Physiol 81:1084–1095

    PubMed  CAS  Google Scholar 

  31. Prisman E, Slessarev M, Han J, Poublanc J, Mardimae A, Crawley A, Fisher J, Mikulis D (2008) Comparison of the effects of independently-controlled end-tidal PCO(2) and PO(2) on blood oxygen level-dependent (BOLD) MRI. J Magn Reson Imaging 27:185–191

    Article  PubMed  Google Scholar 

  32. Shapiro W, Wasserman AJ, Baker JP, Patterson JL Jr (1970) Cerebrovascular response to acute hypocapnic and eucapnic hypoxia in normal man. J Clin Invest 49:2362–2368

    Article  PubMed  CAS  Google Scholar 

  33. Slessarev M, Han J, Mardimae A, Prisman E, Preiss D, Volgyesi G, Ansel C, Duffin J, Fisher JA (2007) Prospective targeting and control of end-tidal CO2 and O2 concentrations. J Physiol 581:1207–1219

    Article  PubMed  CAS  Google Scholar 

  34. Tian R, Vogel P, Lassen NA, Mulvany MJ, Andreasen F, Aalkjaer C (1995) Role of extracellular and intracellular acidosis for hypercapnia-induced inhibition of tension of isolated rat cerebral arteries. Circ Res 76:269–275

    Article  PubMed  CAS  Google Scholar 

  35. Torrance RW. (1996) Prolegomena. Chemoreception upstream of transmitters. In: (Zapata, ed) Frontiers in arterial chemoreception. New York: Plenum, pp 13-38

  36. Valdueza JM, Draganski B, Hoffmann O, Dirnagl U, Einhaupl KM (1999) Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings. Stroke 30:81–86

    Article  PubMed  CAS  Google Scholar 

  37. Wallis SJ, Firth J, Dunn WR (1996) Pressure-induced myogenic responses in human isolated cerebral resistance arteries. Stroke 27:2287–2290

    Article  PubMed  CAS  Google Scholar 

  38. Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, Ikeda K, Graham J, Lewis NC, Day TA, Ainslie PN (2012) Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol 590:3261–3275

    Article  PubMed  CAS  Google Scholar 

  39. Wilson MH, Edsell MEG, Davagnanam I, Hirani SP, Martin DS, Levett DZH, Thornton JS, Golay X, Strycharczuk L, Newman SP, Montgomery HE, Grocott MPW, Imray CHE (2011) Cerebral artery dilatation maintains cerebral oxygenation at extreme altitude and in acute hypoxia—an ultrasound and MRI study. J Cerebral Blood Flow Metab 31:2019–2029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the University of Toronto Merit award to JAF and a nondirected grant from Thornhill Research, Inc.

Conflict of interest

JAF is Chief Scientist and JD is Senior Scientist at Thornhill Research, Inc. (TRI), a spin-off company from the University Health Network that developed the RespirAct™. RespirAct™ is currently a noncommercial research tool made available for this research by TRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Duffin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mardimae, A., Balaban, D.Y., Machina, M.A. et al. The interaction of carbon dioxide and hypoxia in the control of cerebral blood flow. Pflugers Arch - Eur J Physiol 464, 345–351 (2012). https://doi.org/10.1007/s00424-012-1148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1148-1

Keywords

Navigation