Skip to main content

Advertisement

Log in

The Arabidopsis LHP1 protein is a component of euchromatin

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The HP1 family proteins are involved in several aspects of chromatin function and regulation in Drosophila, mammals and the fission yeast. Here we investigate the localization of LHP1, the unique Arabidopsis thaliana HP1 homolog known at present time, to approach its function. A functional LHP1–GFP fusion protein, able to restore the wild-type phenotype in the lhp1 mutant, was used to analyze the subnuclear distribution of LHP1 in both A. thaliana and Nicotiana tabacum. In A. thaliana interphase nuclei, LHP1 was predominantly located outside the heterochromatic chromocenters. No major aberrations were observed in heterochromatin content or chromocenter organization in lhp1 plants. These data indicate that LHP1 is mainly involved in euchromatin organization in A. thaliana. In tobacco BY-2 cells, the LHP1 distribution, although in foci, slightly differed suggesting that LHP1 localization is determined by the underlying genome organization of plant species. Truncated LHP1 proteins expressed in vivo allowed us to determine the function of the different segments in the localization. The in foci distribution is dependent on the presence of the two chromo domains, whereas the hinge region has some nucleolus-targeting properties. Furthermore, like the animal HP1β and HP1γ subtypes, LHP1 dissociates from chromosomes during mitosis. In transgenic plants expressing the LHP1–GFP fusion protein, two major localization patterns were observed according to cell types suggesting that localization evolves with age or differentiation states. Our results show conversed characteristics of the A. thaliana HP1 homolog with the mammal HP1γ isoform, besides specific plant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PI:

Propidium iodide

DAPI:

4′,6-diamidino-2-phenylindole

HP1:

Heterochromatin protein 1

CD:

Chromo domain

CSD:

Chromo shadow domain

HR:

Hinge region

RHF:

Relative heterochromatin fraction

FISH:

Fluorescent in-situ hybridization

NLS:

Nuclear localization signal

NoLS:

Nucleolar localization signal

References

  • Ali HB, Fransz P, Schubert I (2000) Localization of 5S RNA genes on tobacco chromosomes. Chromosome Res 8:85–87

    Article  PubMed  CAS  Google Scholar 

  • Baxter J, Sauer S, Peters A, John R, Williams R, Caparros ML, Arney K, Otte A, Jenuwein T, Merkenschlager M, Fisher AG (2004) Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes. EMBO J 23:4462–4472

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IL (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176

    Article  CAS  Google Scholar 

  • Berger F, Gaudin V (2003) Chromatin dynamics and Arabidopsis development. Chromosome Res 11:277–304

    Article  PubMed  CAS  Google Scholar 

  • Bjerling P, Silverstein RA, Thon G, Caudy A, Grewal S, Ekwall K (2002) Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol Cell Biol 22:2170–2181

    Article  PubMed  CAS  Google Scholar 

  • Brehm A, Tufteland KR, Aasland R, Becker PB (2004) The many colours of chromodomains. Bioessays 26:133–140

    Article  PubMed  CAS  Google Scholar 

  • Chang WL, Lee DC, Leu S, Huang YM, Lu MC, Ouyang P (2003) Molecular characterization of a novel nucleolar protein, pNO40. Biochem Biophys Res Commun 307:569–577

    Article  PubMed  CAS  Google Scholar 

  • Cheutin T, Gorski SA, May KM, Singh PB, Misteli T (2004) In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin. Mol Cell Biol 24:3157–3167

    Article  PubMed  CAS  Google Scholar 

  • Cochrane AW, Perkins A, Rosen CA (1990) Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J Virol 64:881–885

    PubMed  CAS  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Nimmo ER, Javerzat JP, Borgstrom B, Egel R, Cranston G, Allshire R (1996) Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J Cell Sci 109:2637–2648

    PubMed  CAS  Google Scholar 

  • Fass E, Shahar S, Zhao J, Zemach A, Avivi Y, Grafi G (2002) Phosphorylation of histone h3 at serine 10 cannot account directly for the detachment of human heterochromatin protein 1gamma from mitotic chromosomes in plant cells. J Biol Chem 277:30921–30927

    Article  PubMed  CAS  Google Scholar 

  • Festenstein R, Pagakis SN, Hiragami K, Lyon D, Verreault A, Sekkali B, Kioussis D (2003) Modulation of heterochromatin protein 1 dynamics in primary Mammalian cells. Science 299:719–721

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17:1870–1881

    Article  PubMed  CAS  Google Scholar 

  • Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876

    Article  PubMed  CAS  Google Scholar 

  • Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99:14584–14589

    Article  PubMed  CAS  Google Scholar 

  • Gaudin V, Libault M, Pouteau S, Juul T, Zhao G, Lefebvre D, Grandjean O (2001) Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development 128:4847–4858

    PubMed  CAS  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Boyle S, Sutherland H, de Las Heras J, Allan J, Jenuwein T, Bickmore WA (2003) Formation of facultative heterochromatin in the absence of HP1. EMBO J 22:5540–5550

    Article  PubMed  CAS  Google Scholar 

  • Greil F, van der Kraan I, Delrow J, Smothers JF, de Wit E, Bussemaker HJ, van Driel R, Henikoff S, van Steensel B (2003) Distinct HP1 and Su(var)3–9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev 17:2825–2838

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Haraguchi T, Masumoto H, Hiraoka Y (2003) Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J Cell Sci 116:3327–3338

    Article  PubMed  CAS  Google Scholar 

  • He Y, Amasino RM (2005) Role of chromatin modification in flowering-time control. Trends Plant Sci 10:30–35

    Article  PubMed  CAS  Google Scholar 

  • Hebert MD, Matera AG (2000) Self-association of coilin reveals a common theme in nuclear body localization. Mol Biol Cell 11:4159–4171

    PubMed  CAS  Google Scholar 

  • Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33:967–973

    Article  PubMed  CAS  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  PubMed  CAS  Google Scholar 

  • Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295:2080–2083

    Article  PubMed  CAS  Google Scholar 

  • Kellum R (2003) HP1 complexes and heterochromatin assembly. Curr Top Microbiol Immunol 274:53–77

    PubMed  CAS  Google Scholar 

  • Kim JH, Durrett TP, Last RL, Jander G (2004) Characterization of the Arabidopsis TU8 Glucosinolate Mutation, an allele of TERMINAL FLOWER2. Plant Mol Biol 54:671–682

    Article  PubMed  CAS  Google Scholar 

  • Kirschmann DA, Lininger RA, Gardner LM, Seftor EA, Odero VA, Ainsztein AM, Earnshaw WC, Wallrath LL, Hendrix MJ (2000) Down-regulation of HP1Hsalpha expression is associated with the metastatic phenotype in breast cancer. Cancer Res 60:3359–3363

    PubMed  CAS  Google Scholar 

  • Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K (2003) Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol 44:555–564

    Article  PubMed  CAS  Google Scholar 

  • Kourmouli N, Theodoropoulos PA, Dialynas G, Bakou A, Politou AS, Cowell IG, Singh PB, Georgatos SD (2000) Dynamic associations of heterochromatin protein 1 with the nuclear envelope. EMBO J 19:6558–6568

    Article  PubMed  CAS  Google Scholar 

  • Larsson AS, Landberg K, Meeks-Wagner DR (1998) The TERMINAL FLOWER2 (TFL2) gene controls the reproductive transition and meristem identity in Arabidopsis thaliana. Genetics 149:597–605

    PubMed  CAS  Google Scholar 

  • Lee TW, Blair GE, Matthews DA (2003) Adenovirus core protein VII contains distinct sequences that mediate targeting to the nucleus and nucleolus, and colocalization with human chromosomes. J Gen Virol 84:3423–3428

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Butenko Y, Grafi G (2005) Histone deacetylation is required for progression through mitosis in tobacco cells. Plant J 41:346–352

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Kirschmann DA, Wallrath LL (2002) Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci USA 99(Suppl 4):16462–16469

    Article  PubMed  CAS  Google Scholar 

  • Lindroth AM, Shultis D, Jasencakova Z, Fuchs J, Johnson L, Schubert D, Patnaik D, Pradhan S, Goodrich J, Schubert I, Jenuwein T, Khorasanizadeh S, Jacobsen SE (2004) Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J 23:4286–4296

    Article  PubMed  CAS  Google Scholar 

  • Liu JL, Lee LF, Ye Y, Qian Z, Kung HJ (1997) Nucleolar and nuclear localization properties of a Herpesvirus bZIP oncoprotein, MEQ. J Virol 71:3188–3196

    PubMed  CAS  Google Scholar 

  • Liu JY, She CW, Hu ZL, Xiong ZY, Liu LH, Song YC (2004) A new chromosome fluorescence banding technique combining DAPI staining with image analysis in plants. Chromosoma 113:16–21

    Article  PubMed  CAS  Google Scholar 

  • Lohrum MA, Ashcroft M, Kubbutat MH, Vousden KH (2000) Identification of a cryptic nucleolar-localization signal in MDM2. Nat Cell Biol 2:179–181

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Muller J, Krishna P, Forreiter C (2000) A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant Physiol 123:949–958

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Muller J, Pieper K, Ruppel M, Cohen JD, Epstein E, Kiddle G, Bennett R (1999) Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development of clubroot disease. Planta 208:409–419

    Article  PubMed  CAS  Google Scholar 

  • Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5:296–304

    Article  PubMed  CAS  Google Scholar 

  • Malagnac F, Bartee L, Bender J (2002) An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J 21:6842–6852

    Article  PubMed  CAS  Google Scholar 

  • Mateescu B, England P, Halgand F, Yaniv M, Muchardt C (2004) Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep 5:490–496

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Allory Y, Courvalin JC, Buendia B (2001) Immunolocalization of HP1 proteins in metaphasic mammalian chromosomes. Methods Cell Sci 23:171–174

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–234

    Article  PubMed  CAS  Google Scholar 

  • Moscone EA, Matzke MA, Matzke AJ (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236

    Article  CAS  Google Scholar 

  • Murzina N, Verreault A, Laue E, Stillman B (1999) Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol Cell 4:529–540

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    CAS  Google Scholar 

  • Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuter G (2005) Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 24:1418–1429

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416:103–107

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y (2002) A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296:1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Planchais S, Glab N, Trehin C, Perennes C, Bureau JM, Meijer L, Bergounioux C (1997) Roscovitine, a novel cyclin-dependent kinase inhibitor, characterizes restriction point and G2/M transition in tobacco BY-2 cell suspension. Plant J 12:191–202

    Article  PubMed  CAS  Google Scholar 

  • Platero JS, Hartnett T, Eissenberg JC (1995) Functional analysis of the chromo domain of HP1. EMBO J 14:3977–3986

    PubMed  CAS  Google Scholar 

  • Rowland RR, Schneider P, Fang Y, Wootton S, Yoo D, Benfield DA (2003) Peptide domains involved in the localization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus. Virology 316:135–145

    Article  PubMed  CAS  Google Scholar 

  • Rowland RR, Yoo D (2003) Nuclear-cytoplasmic shuttling of PRRSV nucleocapsid protein: a simple case of molecular mimicry or the complex regulation by import, nucleolar localization and nuclear export signal sequences. Virus Res 95:23–33

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, Lipsius E, Kruppa J (1995) Nuclear and nucleolar targeting of human ribosomal protein S6. Mol Biol Cell 6:1875–1885

    PubMed  CAS  Google Scholar 

  • Schmidt-Zachmann MS, Niggs EA (1993) Protein localization to the nucleolus: a search for targeting domains in nucleolin. J Cell Sci 105:799–806

    PubMed  CAS  Google Scholar 

  • Schmiedeberg L, Weisshart K, Diekmann S, Meyer Zu Hoerste G, Hemmerich P (2004) High- and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol Biol Cell 15:2819–2833

    Article  PubMed  CAS  Google Scholar 

  • Smothers JF, Henikoff S (2001) The hinge and chromo shadow domain impart distinct targeting of HP1-like proteins. Mol Cell Biol 21:2555–2569

    Article  PubMed  CAS  Google Scholar 

  • Soppe WJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:6549–6559

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Tasaka H, Dotsu M (2001) Molecular behavior in living mitotic cells of human centromere heterochromatin protein HP1α ectopically expressed as a fusion to red fluorescent protein. Cell Struct Funct 26:705–718

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Goto K (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865

    Article  PubMed  CAS  Google Scholar 

  • Tariq M, Paszkowski J (2004) DNA and histone methylation in plants. Trends Genet 20:244–251

    Article  PubMed  CAS  Google Scholar 

  • Tessadori F, van Driel R, Fransz P (2004) Cytogenetics as a tool to study gene regulation. Trends Plant Sci 9:147–153

    Article  PubMed  CAS  Google Scholar 

  • Thon G, Verhein-Hansen J (2000) Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155:551–568

    PubMed  CAS  Google Scholar 

  • Trehin C, Ahn IO, Perennes C, Couteau F, Lalanne E, Bergounioux C (1997) Cloning of upstream sequences responsible for cell cycle regulation of the Nicotiana sylvestris CycB1;1 gene. Plant Mol Biol 35:667–672

    Article  PubMed  CAS  Google Scholar 

  • Weber JD, Kuo ML, Bothner B, DiGiammarino EL, Kriwacki RW, Roussel MF, Sherr CJ (2000) Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol 20:2517–2528

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Fukuda R, Himeno M, Sugimoto K (1999) Functional domain structure of human heterochromatin protein HP1Hsα: involvement of internal DNA-binding and C-terminal self-association domains in the formation of discrete dots in interphase nuclei. J Biochem 125:832–837

    PubMed  CAS  Google Scholar 

  • Yu Y, Dong A, Shen WH (2004) Molecular characterization of the tobacco SET domain protein NtSET1 unravels its role in histone methylation, chromatin binding, and segregation. Plant J 40:699–711

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ML was supported by a graduate studentship from the French ministry of Research. We thank our colleagues Y. Chupeau and H. Höfte. We are grateful to N. Houba-Herin, J. Davison and V. Colot (URGV, Evry, France) for critical reading of the manuscript, to O. Grandjean and S. Brown (ISV, Gif/Yvette, France) for confocal analysis support, to C. Bergounioux and C. Perennes (IBP, Orsay, France) for tobacco BY-2 cell lines transformations and W. Bickmore and N. Gilbert (MRC, Edinburgh, U.K.) for advices on MNase protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Gaudin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libault, M., Tessadori, F., Germann, S. et al. The Arabidopsis LHP1 protein is a component of euchromatin. Planta 222, 910–925 (2005). https://doi.org/10.1007/s00425-005-0129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0129-4

Keywords

Navigation