Skip to main content
Log in

Evidence for a putative flavonoid translocator similar to mammalian bilitranslocase in grape berries (Vitis vinifera L.) during ripening

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

During maturation, Vitis vinifera berries accumulate a large amount of several anthocyanins in the epidermal tissue, whereas their precursors and intermediates are ubiquitously synthesized within the fruit. Up to date, several mechanisms of flavonoid transport at subcellular level have been hypothesized, but it is not possible to identify a general model applicable in every plant tissue and organ. Recently, a putative anthocyanin carrier, homologue to mammalian bilitranslocase (BTL) (TC 2.A.65.1.1), was found in Dianthus caryophyllus petal microsomes. In the present paper, an immunohistochemical and immunochemical analysis, using an antibody raised against a BTL epitope, evidences the expression and function of such a transporter in V. vinifera berries (cv. Merlot). Specific localisations of the putative carrier within berry tissues together with expression changes during different developmental stages are shown. Water stress induces an increase in protein expression in both skin and pulp samples. A bromosulfalein (BSP) uptake activity, inhibitable by the BTL antibody, is detected in berry mesocarp microsomes, with K m = 2.39 μM BSP and V max = 0.29 μmol BSP min−1 mg−1 protein. This BSP uptake is also competitively inhibited by quercetin (K i = 4 μM). A putative role for this carrier is discussed in relation to the membrane transport of secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC proteins:

ATP-binding cassette proteins

BSA:

Bovine serum albumin

BTL:

Bilitranslocase

BSP:

Bromosulfalein

DTE:

Dithioerythritol

EDTA:

Ethylenediaminetetraacetic acid

FCCP:

Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone

FITC:

Fluorescein isothiocyanate

GST:

Glutathione S-transferases

GS-X:

Glutathione S-conjugate pumps

MRPs:

Multidrug resistance-associated proteins

Pas:

Proanthocyanidins

References

  • Ageorges A, Fernandez L, Vialet S, Merdinoglu D, Terrier N, Romieu C (2006) Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Sci 170:372–383

    Article  CAS  Google Scholar 

  • Bartholomew DM, Van Dyk DE, Lau S-MC, O’Keefe DP, Rea PA, Viitanen PV (2002) Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates. Plant Physiol 130:1562–1572

    Article  PubMed  CAS  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279–291

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066

    PubMed  CAS  Google Scholar 

  • Braidot E, Vianello A, Petrussa E, Macri F (1993) Dissipation of the electrochemical proton gradient in phospholipase-induced degradation of plant mitochondria and microsomes. Plant Sci 90:31–39

    Article  CAS  Google Scholar 

  • Brouillard R, Chassaing S, Fougerousse A (2003) Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long? Phytochemistry 64:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478–490

    Article  PubMed  CAS  Google Scholar 

  • Castellarin SD, Di Gaspero G (2007) Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol 7:46 doi:10.1186/1471-2229-7-46

    Article  PubMed  CAS  Google Scholar 

  • Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon AF, Testolin R (2006) Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7:12–29

    Article  PubMed  CAS  Google Scholar 

  • Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA (2007a) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta. doi:10.1007/s00425-007-0598-8

  • Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G (2007b) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ 30:1381–1399

    Article  PubMed  CAS  Google Scholar 

  • Chen JY, Wen PF, Kong WF, Pan QH, Wan SB, Huang WD (2006) Changes and subcellular localizations of the enzymes involved in phenylpropanoid metabolism during grape berry development. J Plant Physiol 163:115–127

    Article  PubMed  CAS  Google Scholar 

  • Cooke D, Steward WP, Gescher AJ, Marczylo T (2005) Anthocyans from fruits and vegetables—does bright colour signal cancer chemopreventive activity? Eur J Cancer 41:1931–1940

    Article  PubMed  CAS  Google Scholar 

  • Coombe BG (1992) Research on development and ripening of the grape berry. Am J Enol Vitic 43:101–110

    Google Scholar 

  • Debeaujon I, Peeters AJM, Léon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–872

    Article  PubMed  CAS  Google Scholar 

  • Dicko MH, Gruppen H, Barro C, Traore AS, van Berkel WJ, Voragen AG (2005) Impact of phenolic compounds and related enzymes in sorghum varieties for resistance and susceptibility to biotic and abiotic stresses. J Chem Ecol 31:2671–2688

    Article  PubMed  CAS  Google Scholar 

  • Famiani F, Walker RP, Tecsi L, Chen ZH, Proietti P, Leegood RC (2000) An immunohistochemical study of the compartmentation of metabolism during the development of grape (Vitis vinifera L.) berries. J Exp Bot 51:675–683

    Article  PubMed  CAS  Google Scholar 

  • Frangne N, Eggmann T, Koblischke C, Weissenböck G, Martinoia E, Klein M (2002) Flavone glucoside uptake into barley and Arabidopsis cell culture vacuoles-energization occurs by H+ and by ABC type mechanisms. Plant Physiol 128:726–733

    Article  PubMed  CAS  Google Scholar 

  • Gholami M (2004) Biosynthesis of anthocyanins in Shiraz grape berries. Acta Hortic (ISHS) 640:353–359

    CAS  Google Scholar 

  • Goodman CD, Casati P, Walbot V (2004) A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16:1812–1826

    Article  PubMed  CAS  Google Scholar 

  • Gould KS, Markham KR, Smith RH, Goris JJ (2000) Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J Exp Bot 51:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 8:187–210

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E (2004) The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta 219:906–909

    Article  PubMed  CAS  Google Scholar 

  • Irani NG, Grotewold E (2005) Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells. BMC Plant Biol 5:7–22

    Article  PubMed  CAS  Google Scholar 

  • Iriti M, Rossoni M, Borgo M, Ferrara L, Faoro F (2005) Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: primary versus secondary metabolism. J Agric Food Chem 53:9133–9139

    Article  PubMed  CAS  Google Scholar 

  • Juszczuk IM, Wiktorowska A, Malusà E Rychter AM (2004) Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil 267:41–49

    Article  CAS  Google Scholar 

  • Kaltenbach M, Schroder G, Schmelzer E, Lutz V, Schroder J (1999) Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. Plant J 19:183–193

    Article  PubMed  CAS  Google Scholar 

  • Karawajczyk A, Drgan V, Medic N, Oboh G., Passamonti S, Novic M (2007) Properties of flavonoids influencing the binding to bilitranslocase investigated by neural network modelling. Biochem Pharmacol 73:308–320

    Article  PubMed  CAS  Google Scholar 

  • Keppler D, Konig J (1997) Hepatic canalicular membrane 5: expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver. Faseb J 11:509–516

    PubMed  CAS  Google Scholar 

  • Kitamura S (2006) Transport of flavonoids: from cytosolic synthesis to vacuolar accumulation. In: Grotewold E (ed) Science of flavonoids. Springer, Berlin, pp 123–146

    Chapter  Google Scholar 

  • Klein M, Weissenböck G, Dufaud A, Gaillard C, Kreuz K, Martinoia E (1996) Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J Biol Chem 271:29666–29671

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Naciri-Graven Y, Broughton WJ, Perret X (2004) Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 51:335–347

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM (2005) A role for intra- and inter-cellular translocation in natural product biosynthesis. Curr Opin Plant Biol 8:292–300

    Article  PubMed  CAS  Google Scholar 

  • Lin J-K, Weng M-S (2006) Flavonoids as nutraceuticals. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 213–238

    Chapter  Google Scholar 

  • Luchsinger JA, Tang MX, Siddiqui M, Shea S, Mayeux R (2004) Alcohol intake and risk of dementia. J Am Geriatr Soc 52:540–546

    Article  PubMed  Google Scholar 

  • Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M (2007a) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 6:2023–2038

    Article  CAS  Google Scholar 

  • Marinova K, Kleinschmidt K, Weissenbock G, Klein M (2007b) Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Plant Physiol 144:432–444

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  PubMed  CAS  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  PubMed  CAS  Google Scholar 

  • Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R (2006) Metabolite profiling of grape: flavonols and anthocyanins. J Agric Food Chem 54:7692–7702

    Article  PubMed  CAS  Google Scholar 

  • Morris ME, Zhang S (2006) Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci 78:2116–2130

    Article  PubMed  CAS  Google Scholar 

  • Nicolin V, Grill V, Micali F, Narducci P, Passamonti S (2005) Immunolocalisation of bilitranslocase in mucosecretory and parietal cells of the rat gastric mucosa. J Mol Histol 36:45–50

    Article  PubMed  CAS  Google Scholar 

  • Nozue M, Kubo H, Nishimura M, Katou A, Hattori C, Usuda N, Nagata T, Yasuda H (1993) Characterization of intravacuolar pigmented structures in anthocyanin-containing cells of sweet-potato suspension-cultures. Plant Cell Physiol 34:803–808

    CAS  Google Scholar 

  • Passamonti S, Battiston L, Sottocasa GL (2000) Gastric uptake of nicotinic acid by bilitranslocase. FEBS Lett 482:167–168

    Article  PubMed  CAS  Google Scholar 

  • Passamonti S, Vrhovsek U, Mattivi F (2002) The interaction of anthocyanins with bilitranslocase. Biochem Biophys Res Commun 296:631–636

    Article  PubMed  CAS  Google Scholar 

  • Passamonti S, Terdoslavich M, Margon A, Cocolo A, Medic N, Micali F, Decorti G, Franko M (2005a) Uptake of bilirubin into HepG2 cells assayed by thermal lens spectroscopy. FEBS J 272:5522–5535

    Article  PubMed  CAS  Google Scholar 

  • Passamonti S, Vanzo A, Vrhovsek U, Terdoslavich M, Cocolo A, Decorti G, Mattivi F (2005b) Hepatic uptake of grape anthocyanins and the role of bilitranslocase. Food Res Int 38:953–960

    Article  CAS  Google Scholar 

  • Passamonti S, Cocolo A, Braidot E, Petrussa E, Peresson C, Medic N, Macri F, Vianello A (2005c) Characterization of electrogenic bromosulfophthalein transport in carnation petal microsomes and its inhibition by antibodies against bilitranslocase. FEBS J 272:3282–3296

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Murphy AS (2006) Flavonoids as signal molecules. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 239–268

    Chapter  Google Scholar 

  • Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, Grotewold E (2007) A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol 145:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (1999) MRP subfamily ABC transporters from plants and yeast. J Exp Bot 50:895–913

    Article  CAS  Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361

    Article  CAS  Google Scholar 

  • Terrier N, Sauvage FX, Ageorges A, Romieu C (2001) Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213:20–28

    Article  PubMed  CAS  Google Scholar 

  • Walker RP, Acheson RM, Tecsi LI, Leegood RC (1997) Phosphoenolpyruvate carboxykinase in C4 plants: its role and regulation. Aust J Plant Physiol 24:459–468

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colourful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307

    Article  PubMed  CAS  Google Scholar 

  • Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51:675–683

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Wang L, Deroles S, Bennett R, Davies K (2006a) New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biol 6:29–43

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC, Wu FQ, Yu XC, Zhang DP (2006b) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol 142:220–232

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by “Tenuta Villanova”, Vineyard and Winery at Farra d’Isonzo (GO), Friuli-Venezia Giulia, Italy, and by the Regione Autonoma Friuli-Venezia Giulia (L.R. 26/2005 art. 17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vianello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braidot, E., Petrussa, E., Bertolini, A. et al. Evidence for a putative flavonoid translocator similar to mammalian bilitranslocase in grape berries (Vitis vinifera L.) during ripening. Planta 228, 203–213 (2008). https://doi.org/10.1007/s00425-008-0730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0730-4

Keywords

Navigation