Skip to main content
Log in

Whirly1 in chloroplasts associates with intron containing RNAs and rarely co-localizes with nucleoids

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The nucleic acid binding protein Whirly1 of barley has been located to both chloroplasts and the nucleus of the same cell. Immunogold labelling furthermore showed that in vivo Whirly1 does not strictly co-localize with DNA in chloroplasts, while it is closely associated with DNA in the nucleus. High-resolution imaging of Whirly1-GFP and PEND-RFP fusion proteins revealed that only a minor part of Whirly1 co-localizes with nucleoids. The co-localization with nucleoids is in accordance with the detection of Whirly1 in a conventionally prepared fraction of the transcriptionally active chromosome (TAC). By further purification and enrichment of transcriptional activity Whirly1, however, was lost from the TAC fraction. Knockdown of Whirly1 in transgenic barley plants had neither impact on transcription of selected protein coding genes nor on genes coding for ribosomal RNAs or tRNAs. The results of RIP-chip experiments showed that barley Whirly1 as its maize orthologue associates with a set of intron containing plastid RNAs. Taken together, the results suggest that plastid-located Whirly1 functions primarily in RNA metabolism rather than as a DNA binding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TAC:

Transcriptionally active chromosome

RIP-chip:

RNA co-immunoprecipitation and chip hybridization

sRNAP:

Soluble RNA polymerase

References

  • Bogenhagen DF, Rousseau D, Burke S (2008) The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283:3665–3675

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • De Santis-Maciossek G, Kofer W, Bock A, Schoch S, Maier RM, Wanner G, Rüdiger W, Koop HU, Herrmann RG (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18:477–489

    Article  PubMed  Google Scholar 

  • Dehesh K, Klaas M, Häuser I, Apel K (1986) Light-induced changes in the distribution of the 36000-Mr polypeptide of NADPH-protochlorophyllide oxidoreductase within different cellular compartments of barley (Hordeum vulgare L.). I. Localization by immunoblotting in isolated plastids and total leaf extracts. Planta 169:162–171

    Article  CAS  Google Scholar 

  • Desveaux D, Després C, Joyeux A, Subramaniam R, Brisson N (2000) PBF-2 is a novel single-stranded DNA binding factor implicated in the PR-10a gene activation in potato. Plant Cell 12:1477–1489

    Article  CAS  PubMed  Google Scholar 

  • Desveaux D, Allard J, Brisson N, Sygusch J (2002) A new family of plant transcription factors displays a novel ssDNA-binding surface. Nat Struct Biol 9:512–517

    Article  CAS  PubMed  Google Scholar 

  • Desveaux D, Maréchal A, Brisson N (2005) Whirly transcription factors: defense gene regulation and beyond. Trends Plant Sci 10:95–102

    Article  CAS  PubMed  Google Scholar 

  • Fling SP, Gregerson DS (1986) Peptide and protein molecular weight determination by electrophoresis using high-molarity tris buffer without urea. Anal Biochem 155:83–88

    Article  CAS  PubMed  Google Scholar 

  • Grabowski E, Miao Y, Mulisch M, Krupinska K (2008) Single-stranded DNA binding protein Whirly1 in barley leaves is located in chloroplasts and nuclei of the same cell. Plant Physiol 147:1800–1804

    Article  CAS  PubMed  Google Scholar 

  • Gruissem W, Greenberg BM, Zurawski G, Hallick RB (1986) Chloroplast gene expression and promoter identification in chloroplast extracts. Methods Enzymol 118:253–270

    Article  CAS  PubMed  Google Scholar 

  • Hallick RB, Lipper C, Richards OC, Rutter WJ (1976) Isolation of a transcriptionally active chromosome from chloroplasts of Euglena gracilis. Biochemistry 15:3039–3045

    Article  CAS  PubMed  Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71–82

    Article  CAS  PubMed  Google Scholar 

  • Humbeck K, Quast S, Krupinska K (1996) Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ 19:337–344

    Article  CAS  Google Scholar 

  • Igloi GL, Kössel H (1992) The transcriptional apparatus of chloroplasts. Crit Rev Plant Sci 10:525–558

    Article  CAS  Google Scholar 

  • Jeong SY, Rose A, Meier I (2003) MFP1 is a thylakoid-associated, nucleoid-binding protein with a coiled-coil structure. Nucleic Acids Res 31:5175–5185

    Article  CAS  PubMed  Google Scholar 

  • Krause K, Krupinska K (2000) Molecular and functional properties of highly purified transcriptionally active chromosomes from spinach chloroplasts. Physiol Plant 109:188–195

    Article  CAS  Google Scholar 

  • Krause K, Kilbienski I, Mulisch M, Rödiger A, Schäfer A, Krupinska K (2005) DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett 579:3707–3712

    Article  CAS  PubMed  Google Scholar 

  • Krause K, Herrmann U, Fuß J, Miao Y, Krupinska K (2009) Whirly proteins as communicators between plant organelles and the nucleus? Endocytobiosis Cell Res 19:51–62

    Google Scholar 

  • Krupinska K (1992) Transcriptional control of plastid gene expression during development of primary foliage leaves of barley grown under a daily light-dark regime. Planta 186:294–303

    Article  CAS  Google Scholar 

  • Krupinska K, Apel K (1989) Light-induced transformation of etioplasts to chloroplasts of barley without transcriptional control of plastid gene expression. Mol Gen Genet 219:467–473

    Article  CAS  Google Scholar 

  • Krupinska K, Falk J (1994) Changes in RNA-polymerase activity during biogenesis, maturation and senescence of barley chloroplasts. Comparative analysis of transcripts synthesized either in run-on assays or by transcriptionally active chromosomes. J Plant Physiol 143:298–305

    CAS  Google Scholar 

  • Lakhani S, Khanna NC, Tewari KK (1993) Nascent transcript-binding protein of the pea chloroplast transcriptionally active chromosome. Plant Mol Biol 23:963–979

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Maréchal A, Parent J-S, Véronneau-Lafortune F, Joyeux A, Lang F, Brisson N (2009) Whirly proteins maintain plastid genome stability in Arabidopsis. Proc Natl Acad Sci USA 106:14693–14698

    Article  PubMed  Google Scholar 

  • Meier I, Phelan T, Gruissem W, Spiker S, Schneider D (1996) MFP1, a novel plant filament-like protein with affinity for matrix attachment region DNA. Plant Cell 8:2105–2115

    Article  CAS  PubMed  Google Scholar 

  • Mullet JE (1988) Chloroplast development and gene expression. Ann Rev Plant Physiol Plant Mol Biol 39:475–502

    Article  CAS  Google Scholar 

  • Pfalz J, Liere K, Kandlbinder A, Dietz K-J, Oelmüller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    Article  CAS  PubMed  Google Scholar 

  • Poulsen C (1983) The barley chloroplast genome: physical structure and transcriptional activity in vivo. Carlsberg Res Commun 48:57–80

    Article  CAS  Google Scholar 

  • Prikryl J, Watkins KP, Friso G, van Wijk KJ, Barkan A (2008) A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis. Nucleic Acids Res 36:5152–5165

    Article  CAS  PubMed  Google Scholar 

  • Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115:571–590

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immunoprecipitation and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17:2791–2804

    Article  CAS  PubMed  Google Scholar 

  • Suck R, Zeltz P, Falk J, Acker A, Kössel H, Krupinska K (1996) Transcriptionally active chromosomes (TACs) of barley chloroplasts contain the α-subunit of plastome-encoded RNA polymerase. Curr Genet 30:515–521

    Article  CAS  PubMed  Google Scholar 

  • Terasawa K, Sato N (2005) Visualization of plastid nucleoids in situ using the PEND-GFP fusion protein. Plant Cell Physiol 46:649–660

    Article  CAS  PubMed  Google Scholar 

  • Weber P, Fulgosi H, Piven I, Müller L, Krupinska K, Duong VH, Herrmann RG, Sokolenko A (2006) TCP34, a nuclear-encoded response regulator-like TPR protein of higher plant chloroplasts. J Mol Biol 357:535–549

    Article  CAS  PubMed  Google Scholar 

  • Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  CAS  PubMed  Google Scholar 

  • Xiong JY, Lai CX, Qu Z, Yang XY, Qin XH, Liu GQ (2009) Recruitment of AtWHY1 and AtWHY3 by a distal element upstream of the kinesin gene AtKP1 to mediate transcriptional repression. Plant Mol Biol 71:437–449

    Article  CAS  PubMed  Google Scholar 

  • Yoo HH, Kwon C, Lee MM, Chung IK (2007) Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. Plant J 49:442–451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Susanne Braun, Marita Beese, Cornelia Marthe and Reik Modrozynski for technical assistance. Christine Desel (CAU Kiel) is thanked for expert guidance in confocal laser scanning microscopy. Anke Schäfer is thanked for helpful ideas and Ying Miao (CAU Kiel) for critical reading of the manuscript and for help in preparation of the figures. Iris Meier (The Ohio State University, USA) is thanked for providing the antibody towards MFP1. We thank the Center of Biochemistry and Molecular Biology (CAU Kiel) for providing the phosphorimaging equipment. This work was supported by grants of the Deutsche Forschungsgemeinschaft (Kr1350/8, Kr1350/9) and an Emmy-Noether stipend to CSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Krupinska.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melonek, J., Mulisch, M., Schmitz-Linneweber, C. et al. Whirly1 in chloroplasts associates with intron containing RNAs and rarely co-localizes with nucleoids. Planta 232, 471–481 (2010). https://doi.org/10.1007/s00425-010-1183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1183-0

Keywords

Navigation