Skip to main content
Log in

Distinct substrate specificities and unusual substrate flexibilities of two hydroxycinnamoyltransferases, rosmarinic acid synthase and hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl-transferase, from Coleus blumei Benth.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

cDNAs and genes encoding a hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyltransferase (CbRAS; rosmarinic acid synthase) and a hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (CbHST) were isolated from Coleus blumei Benth. (syn. Solenostemon scutellarioides (L.) Codd; Lamiaceae). The proteins were expressed in E. coli and the substrate specificity of both enzymes was tested. CbRAS accepted several CoA-activated phenylpropenoic acids as donor substrates and d-(hydroxy)phenyllactates as acceptors resulting in ester formation while shikimate and quinate were not accepted. Unexpectedly, amino acids (d-phenylalanine, d-tyrosine, d-DOPA) also yielded products, showing that RAS can putatively catalyze amide formation. CbHST was able to transfer cinnamic, 4-coumaric, caffeic, ferulic as well as sinapic acid from CoA to shikimate but not to quinate or acceptor substrates utilized by CbRAS. In addition, 3-hydroxyanthranilate, 3-hydroxybenzoate and 2,3-dihydroxybenzoate were used as acceptor substrates. The reaction product with 3-aminobenzoate putatively is an amide. For both enzymes, structural requirements for donor and acceptor substrates were deduced. The acceptance of unusual acceptor substrates by CbRAS and CbHST resulted in the formation of novel compounds. The rather relaxed substrate as well as reaction specificity of both hydroxycinnamoyltransferases opens up possibilities for the evolution of novel enzymes forming novel secondary metabolites in plants and for the in vitro formation of new compounds with putatively interesting biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DHPL:

3,4-Dihydroxyphenyllactic acid

HCT:

Hydroxycinnamoyltransferase

HCSQT:

Hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase

HQT:

Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferase

HST:

Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase

pHPL:

4-Hydroxyphenyllactic acid

RAS:

Rosmarinic acid synthase = hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyltransferase

References

  • Adam KP (1995) Caffeic acid derivatives in fronds of the lady fern (Athyrium filix-femina). Phytochemistry 40:1577–1578

    Article  CAS  Google Scholar 

  • Baba S, Osakabe N, Natsume M, Terao J (2004) Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid. Life Sci 75:165–178

    Article  PubMed  CAS  Google Scholar 

  • Berger A, Meinhard J, Petersen M (2006) Rosmarinic acid synthase is a new member of the superfamily of BAHD acyltransferases. Planta 224:1503–1510

    Article  PubMed  CAS  Google Scholar 

  • Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta 1760:1304–1313

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burhenne K, Kristensen BK, Rasmussen SK (2003) A new class of N-hydroxycinnamoyltransferases. Purification, cloning, and expression of a barley agmatine coumaroyltransferase (EC 2.3.1.64). J Biol Chem 278:13919–13927

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single‐step method of RNA isolation by acid guanidinium thiocyanate phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Clé C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MAK (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicon: consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149–2156

    Article  PubMed  Google Scholar 

  • Clifford MN, Knight S (2004) The cinnamoyl-amino acid conjugates of green robusta coffee beans. Food Chem 87:457–463

    Article  CAS  Google Scholar 

  • Clifford MN, Kellard B, Ah-Sing E (1989) Caffeoyltyrosine from green robusta coffee beans. Phytochemistry 28:1989–1990

    Article  CAS  Google Scholar 

  • Comino C, Lanteri S, Portis E, Acquadro A, Romani A, Hehn A, Larbat R, Bourgaud F (2007) Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L. BMC Plant Biol 7:14

    Article  PubMed  Google Scholar 

  • Comino C, Hehn A, Moglia A, Menin B, Bourgaud F, Lanteri S, Portis E (2009) The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biol 9:30

    Article  PubMed  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  PubMed  Google Scholar 

  • Facchini PJ, Hagel J, Zulak K (2002) Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Can J Bot 80:577–589

    Article  CAS  Google Scholar 

  • Fellenberg C, Boettcher C, Vogt T (2009) Phenylpropanoid polyamine conjugate biosynthesis in Arabidopsis thaliana flower buds. Phytochemistry 70:1392–1400

    Article  PubMed  CAS  Google Scholar 

  • Garvey GS, McCormick SP, Rayment I (2008) Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: kinetic insights to combating Fusarium head blight. J Biol Chem 283:1660–1669

    Article  PubMed  CAS  Google Scholar 

  • Grienenberger E, Besseau S, Geoffroy P, Debayle D, Heintz D, Lapierre C, Pollet B, Heitz T, Legrand M (2009) A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J 58:246–259

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxy-cinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl-transferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2005) Acyltransferase-catalysed p-coumarate ester formation is a committed step of lignin biosynthesis. Plant Biosyst 139:50–53

    Google Scholar 

  • Kang S, Kang K, Chung GC, Choi D, Ishihara A, Lee DS, Back K (2006) Functional analysis of the amine substrate specificity domain of pepper tyramine and serotonin N-hydroxycinnamoyltransferases. Plant Physiol 140:704–715

    Article  PubMed  CAS  Google Scholar 

  • Landmann C (2007) Funktionelle Charakterisierung von Enzymen des Sekundärstoffwechsels in Lavendel (Lavandula angustifolia) und Erdbeere (Fragaria × ananassa). Dissertation, Technical University of Munich (Germany)

  • Lehfeldt C, Shirley AM, Meyer K, Ruegger MO, Cusumano JC, Viitanen PV, Strack D, Chapple C (2000) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12:1295–1306

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318–333

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Koepke J, Panjikar S, Fritzsch G, Stöckigt J (2005) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem 280:13576–13583

    Article  PubMed  CAS  Google Scholar 

  • Martin-Tanguy J, Cabanne F, Perdrizet E, Martin C (1978) The distribution of hydroxycinnamic acid amides in flowering plants. Phytochemistry 17:1927–1928

    Article  CAS  Google Scholar 

  • Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Strack D (2004) Serine carboxypeptidase-like acyltransferases. Phytochemistry 65:517–524

    Article  PubMed  CAS  Google Scholar 

  • Mugford ST, Qi X, Bakht S, Hill L, Wegel E, Hughes RK, Papadopoulou K, Melton R, Philo M, Sainsbury F, Lomonossoff GP, Roy AD, Goss RJM, Osbourn A (2009) A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21:2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Sasaki K, Sato K, Yoshizaki F, Yamada H, Mutoh H, Umehara K, Miyase T, Warashina T, Aoshima H, Tabata H, Matsubara K (2009) Matrix metalloproteinase-2 inhibitors from Clinopodium chinense var. parviflorum. J Nat Prod 72:1379–1384

    Article  PubMed  CAS  Google Scholar 

  • Niggeweg R, Michael A, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnol 22:746–754

    Article  CAS  Google Scholar 

  • Petersen M (1991) Characterization of rosmarinic acid synthase from cell cultures of Coleus blumei. Phytochemistry 30:2877–2881

    Article  CAS  Google Scholar 

  • Petersen M, Alfermann AW (1988) Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z Naturforsch 43c:501–504

    Google Scholar 

  • Petersen M, Metzger JW (1993) Identification of the reaction products of rosmarinic acid synthase from cell cultures of Coleus blumei by ion spray mass spectrometry and tandem mass spectrometry. Phytochem Anal 4:131–134

    Article  CAS  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Molecules of interest: rosmarinic acid. Phytochemistry 62:121–125

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679

    Article  PubMed  CAS  Google Scholar 

  • Popper ZA, Tuohy MG (2010) Beyond the Green: understanding the evolutionary puzzle of plant and algal cell walls. Plant Physiol 153:373–383

    Article  PubMed  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Sanbongi C, Osakabe N, Natsume M, Takizawa T, Gomi S, Osawa T (1998) Antioxidative polyphenols isolated from Theobroma cacao. J Agric Food Chem 46:454–457

    Article  PubMed  CAS  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  PubMed  CAS  Google Scholar 

  • Shadle G, Chen F, Reddy MSS, Jackson L, Nakashima J, Dixon RA (2007) Down-regulation of hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 68:1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Sondheimer E (1964) Chlorogenic acid and related depsides. Bot Rev 30:667–712

    Article  CAS  Google Scholar 

  • St. Pierre B, De Luca V (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Rec Adv Phytochem 34:285–316

    Article  CAS  Google Scholar 

  • Stark T, Hofmann T (2005) Isolation, structure determination, synthesis, and sensory activity of N-phenylpropenoyl-l-amino acids from cocoa (Theobroma cacao). J Agric Food Chem 53:5419–5428

    Article  PubMed  CAS  Google Scholar 

  • Steffens JC (2000) Acyltransferases in protease’s clothing. Plant Cell 12:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Stehle F, Brandt W, Schmidt J, Milkowski C, Strack D (2008a) Activities of Arabidopsis sinapoylglucose:malate sinapoyltransferase shed light on functional diversification of serine carboxypeptidase-like acyltransferases. Phytochemistry 69:1826–1831

    Article  PubMed  CAS  Google Scholar 

  • Stehle F, Stubbs MT, Strack D, Milkowski C (2008b) Heterologous expression of a serine carboxypeptidase-like acyltransferase and characterization of the kinetic mechanism. FEBS J 275:775–787

    Article  PubMed  CAS  Google Scholar 

  • Stöckigt J, Zenk MH (1975) Chemical syntheses and properties of hydroxycinnamoyl‐coenzyme A derivates. Z Naturforsch 30c:352–358

    Google Scholar 

  • Tebayashi S, Ishihara A, Tsuda M, Iwamura H (2000) Induction of clovamide by jasmonic acid in red clover. Phytochemistry 54:387–392

    Article  PubMed  CAS  Google Scholar 

  • Ulbrich B, Zenk MH (1979) Partial purification and properties of hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase from higher plants. Phytochemistry 18:929–933

    Article  CAS  Google Scholar 

  • Ulbrich B, Zenk MH (1980) Partial purification and properties of p-hydroxycinnamoyl-CoA:shikimate-p-hydroxycinnamoyl transferase from higher plants. Phytochemistry 19:1625–1629

    Article  CAS  Google Scholar 

  • Unno H, Ichimaida F, Suzuki H, Takahashi S, Tanaka Y, Saito A, Nishino T, Kusunoki M, Nakayama T (2007) Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J Biol Chem 282:15812–15822

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara B, Te Kiri L (2007) Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase in Pinus radiata. Proc Natl Acad Sci USA 104:11856–11861

    Article  PubMed  CAS  Google Scholar 

  • Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogen Evol 29:456–463

    Article  CAS  Google Scholar 

  • Yang Q, Reinhard K, Schiltz E, Matern U (1997) Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant Mol Biol 35:777–789

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Trinh HX, Imai S, Ishihara A, Zhang L, Nakayashiki H, Tosa Y, Mayama S (2004) Analysis of the involvement of hydroxyanthranilate hydroxycinnamoyltransferase and caffeoyl-CoA 3-O-methyltransferase in phytoalexin biosynthesis in oat. Mol Plant Microbe Interact 17:81–89

    Article  PubMed  CAS  Google Scholar 

  • Yu XH, Gou JY, Liu CJ (2009) BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression. Plant Mol Biol 70:421–442

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (grant PE 360/21-1). We want to thank Dr. S. Martens and Prof. Dr. S.-M. Li for providing us with some of the substrates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Petersen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 336 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sander, M., Petersen, M. Distinct substrate specificities and unusual substrate flexibilities of two hydroxycinnamoyltransferases, rosmarinic acid synthase and hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl-transferase, from Coleus blumei Benth.. Planta 233, 1157–1171 (2011). https://doi.org/10.1007/s00425-011-1367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1367-2

Keywords

Navigation