Skip to main content
Log in

Features of a unique intronless cluster of class I small heat shock protein genes in tandem with box C/D snoRNA genes on chromosome 6 in tomato (Solanum lycopersicum)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Physical clustering of genes has been shown in plants; however, little is known about gene clusters that have different functions, particularly those expressed in the tomato fruit. A class I 17.6 small heat shock protein (Sl17.6 shsp) gene was cloned and used as a probe to screen a tomato (Solanum lycopersicum) genomic library. An 8.3-kb genomic fragment was isolated and its DNA sequence determined. Analysis of the genomic fragment identified intronless open reading frames of three class I shsp genes (Sl17.6, Sl20.0, and Sl20.1), the Sl17.6 gene flanked by Sl20.1 and Sl20.0, with complete 5′ and 3′ UTRs. Upstream of the Sl20.0 shsp, and within the shsp gene cluster, resides a box C/D snoRNA cluster made of SlsnoR12.1 and SlU24a. Characteristic C and D, and C′ and D′, boxes are conserved in SlsnoR12.1 and SlU24a while the upstream flanking region of SlsnoR12.1 carries TATA box 1, homol-E and homol-D box-like cis sequences, TM6 promoter, and an uncharacterized tomato EST. Molecular phylogenetic analysis revealed that this particular arrangement of shsps is conserved in tomato genome but is distinct from other species. The intronless genomic sequence is decorated with cis elements previously shown to be responsive to cues from plant hormones, dehydration, cold, heat, and MYC/MYB and WRKY71 transcription factors. Chromosomal mapping localized the tomato genomic sequence on the short arm of chromosome 6 in the introgression line (IL) 6-3. Quantitative polymerase chain reaction analysis of gene cluster members revealed differential expression during ripening of tomato fruit, and relatively different abundances in other plant parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

shsp:

Small heat shock protein

nt:

Nucleotide

Q-PCR:

Quantitative polymerase chain reaction

References

  • Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Dominguez E, Wang Z, De Vos RCH, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5:e1000777

    Article  PubMed  CAS  Google Scholar 

  • Alcala J, Vrebalow J, White R, Matern AL, Vision T, Holt IE, Liang F, Upton J, Craven MB, Bowman CL et al (1999) Generation of ESTs from tomato callus tissue. NCBI-EST Database

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amoutzias G, Van de Peer Y (2008) Together we stand: genes cluster to coordinate regulation. Dev Cell 14:640–642

    Article  PubMed  CAS  Google Scholar 

  • Antal M, Mougin A, Kis M, Boros E, Steer G, Jakab G, Solymosy F, Branlant C (2000) Molecular characterization at the RNA and gene levels of U3 snoRNA from a unicellular green alga, Chlamydomonas reinhardtii. Nucl Acids Res 28:2959–2968

    Article  PubMed  CAS  Google Scholar 

  • Arrigo A-P, Ahmad-Zadeh C (1981) Immunofluorescence localization of a small heat shock protein (hsp23) in salivary glad cells of Drosophila melanogaster. Mol Gen Genet 184:73–79

    Article  PubMed  CAS  Google Scholar 

  • Baker JE, Anderson JD, Hruschka WR (1985) Protein synthesis in tomato fruit pericarp tissue during ripening. Characteristics of amino acid incorporation. J Plant Physiol 120:167–179

    Article  CAS  Google Scholar 

  • Barneche F, Gaspin C, Guyot R, Echeverría M (2001) Identification of 66 Box C/D snoRNAs in Arabidopsis thaliana: extensive gene duplications generated multiple isoforms predicting new ribosomal RNA 2′-O-methylation sites. J Mol Biol 311:57–73

    Article  PubMed  CAS  Google Scholar 

  • Bazzini AA, Almasia NI, Manacorda CA, Mongelli VC, Conti G, Maroniche GA, Rodriguez MC, Distéfano AJ, Hopp HE, del Vas M, Asurmendi S (2009) Virus infection elevates transcriptional activity of miR164a promoter in plants. BMC Plant Biol. doi:10.1186/1471-2229-9-152

  • Bennardini F, Wrzosek A, Chiesi M (1992) αB-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res 71:288–294

    PubMed  CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    Article  PubMed  CAS  Google Scholar 

  • Boter M, Ruíz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    Article  PubMed  CAS  Google Scholar 

  • Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jady BE, Rothe B, Pescia C, Robert MC, Kiss T et al (2008) The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 180:579–595

    Article  PubMed  CAS  Google Scholar 

  • Brown JW, Clark GP, Leader DJ, Simpson CG, Lowe T (2001) Multiple snoRNA gene clusters from Arabidopsis. RNA 7:1817–1832

    PubMed  CAS  Google Scholar 

  • Busk PK, Jensen AB, Pagès M (1997) Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J 11:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Mock HP, Matros A, Petrek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Cannon CH, Kua CS, Lobenhofer EK, Hurban P (2006) Capturing genomic signatures of DNA variation using a standard anonymous microarray platform. Nucl Acids Res 34:e121. doi:10.1093/nar/gkl478

    Article  PubMed  CAS  Google Scholar 

  • Cannon SB, May GD, Jackson SA (2009) Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol 151:970–977

    Article  PubMed  CAS  Google Scholar 

  • Chang S-H, Lu L-S, Wang NN, Chang Y–Y (2008) Negative feedback regulation of system-1 ethylene production by the tomato 1-aminocyclopropane-1-carboxylate synthase 6 gene promoter. Plant Sci 175:149–160

    Article  CAS  Google Scholar 

  • Chen MS, Featherstone T, Laszlo A (1996) Amplification and altered expression of the hsc70/U14 snoRNA gene in a heat resistant Chinese hamster cell line. Cell Stress Chaperones 1:47–61

    Article  PubMed  Google Scholar 

  • Chen Y, Yang X, He K, Liu M, Jigang L, Gao Z, Lin Z, Zhang Y, Wang X, Qiu X, Shen Y, Zhang et al (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  CAS  Google Scholar 

  • Chen CL, Chen CJ, Vallon O, Huang ZP, Zhou H, Qu LH (2008) Genome wide analysis of Box C/D and Box H/ACA snoRNAs in Chlamydomonas reinhardtii reveals an extensive organization into intronic gene clusters. Genetics 179:21–30

    Article  PubMed  CAS  Google Scholar 

  • Coca MA, Almoguera C, Jordano J (1994) Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible implications. Plant Mol Biol 25:479–492

    Article  PubMed  CAS  Google Scholar 

  • Cominelli E, Tonelli C (2009) A new role for plant R2R3-MYB transcription factors in cell cycle regulation. Cell Res 19:1231–1232

    Article  PubMed  Google Scholar 

  • Cui X, Xu SM, Mu DS, Yang ZM (2009) Genomic analysis of rice microRNA promoters and clusters. Gene 431:61–66

    Article  PubMed  CAS  Google Scholar 

  • DeRocher AE, Vierling E (1994) Developmental control of small heat shock protein expression during pea seed maturation. Plant J 5:93–102

    Article  CAS  Google Scholar 

  • DeRocher AE, Helm KW, Lauzon LM, Vierling E (1991) Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol 96:1038–1047

    Article  PubMed  CAS  Google Scholar 

  • Enright CA, Maxwell ES, Eliceiri GL, Sollner-Webb B (1996) 5′ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. RNA 11:1094–1099

    Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennelli in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Field B, Osbourn AE (2008) Metabolic diversification-independent assembly of operon-like gene clusters in different plants. Science 320:543–547

    Article  PubMed  CAS  Google Scholar 

  • Fluhr R, Mattoo AK (1996) Ethylene–biosynthesis and perception. Crit Rev Plant Sci 15:479–523

    CAS  Google Scholar 

  • Friedrich KL, Giese KC, Buan NR, Vierling E (2004) Interactions between small heat shock protein subunits and substrate in small heat shock protein–substrate complexes. J Biol Chem 279:1080–1089

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282:656–659

    Article  PubMed  CAS  Google Scholar 

  • Ghosh D (1999) Object oriented transcription factors database (ooTFD). Nucl Acids Res 27:315–317

    Article  PubMed  CAS  Google Scholar 

  • Gierl A, Frey M (2001) Evolution of benzoxazinone biosynthesis and indole production in maize. Planta 213:493–498

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283–289

    Article  PubMed  CAS  Google Scholar 

  • Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik MP, Cashmore AR (1988) An evolutionary conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA 85:7089–7093

    Article  PubMed  CAS  Google Scholar 

  • Guan JC, Jinn TL, Yeh CH, Feng SP, Chen YM, Lin CY (2004) Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol Biol 56:795–809

    Article  PubMed  CAS  Google Scholar 

  • Higo KY, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucl Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hoffman MG, Sinha AK, Proels RK, Roitsch T (2008) Cloning and characterization of a novel LpWRKY1 transcription factor in tomato. Plant Physiol Biochem 46:533–540

    Article  CAS  Google Scholar 

  • Hurst LD, Pal C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5:299–310

    Article  PubMed  CAS  Google Scholar 

  • Kappé G, Leunissen JA, de Jong WW (2002) Evolution and diversity of prokaryotic small heat shock proteins. Prog Mol Subcell Biol 28:1–17

    Article  PubMed  Google Scholar 

  • Kiss T, Solymosy F (1990) Molecular analysis of a U3 RNA gene locus in tomato: transcription signals, the coding region, expression in transgenic tobacco plants and tandemly repeated pseudogenes. Nucl Acids Res 18:1941–1949

    Article  PubMed  CAS  Google Scholar 

  • Kiss T, Marshallsay C, Filipowicz W (1991) Alteration of the RNA polymerase specificity of U3 snRNA genes during evolution and in vitro. Cell 65:517–526

    Article  PubMed  CAS  Google Scholar 

  • Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T (1996) Site specific ribose methylation of pre ribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–1108

    Article  PubMed  Google Scholar 

  • Kiss-László Z, Henry Y, Kiss T (1998) Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J 17:797–807

    Article  PubMed  Google Scholar 

  • Ku LK, Romani RJ (1970) The ribosomes of pear fruit. Plant Physiol 45:401–407

    Article  PubMed  CAS  Google Scholar 

  • Ku HM, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126

    Article  PubMed  CAS  Google Scholar 

  • Lange TS, Borovjagin A, Maxwell ES, Gerbi SA (1998) Conserved boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs. EMBO J 17:3176–3187

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Li W, Jiang G, Zeng D, Jin Y (2007) Identification of six new box C/D snoRNA gene clusters from rice. IBUMB Life 59:664–674

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Butelli E, Hill L, Parr A, Niggeweg R, Bailey P, Weisshaar B, Martin C (2008) AtMYB12 regulates caffeoyl quinic acid and flavool synthesis in tomato: expression in fruit results in very high levels of both type of polyphenol. Plant J 56:316–326

    Article  PubMed  CAS  Google Scholar 

  • Manzara T, Carrasco P, Gruissem W (1991) Developmental and organ-specific changes in promoter DNA-proteins interactions in thetomato rbcS gene family. Plant Cell 3:1305–1316

    Article  PubMed  CAS  Google Scholar 

  • Marshallsay C, Connelly S, Filipowicz W (1992) Characterization of the U3 and U6 snRNA genes from wheat: U3 snRNA genes in monocot plants are transcribed by RNA polymerase III. Plant Mol Biol 19:973–983

    Article  PubMed  CAS  Google Scholar 

  • Matarasso N, Schuster S, Avni A (2005) A novel plant cysteine protease had a dual function as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase gene expression. Plant Cell 17:1205–1216

    Article  PubMed  CAS  Google Scholar 

  • Mattoo AK, Chung S-H, Goyal RK, Fatima T, Srivastava A, Solomos T, Handa AK (2007) Over-accumulation of higher polyamines in ripening transgenic tomato fruit revives metabolic memory, upregulates anabolism-related genes, and positively impacts nutritional quality. J AOAC Int 90:1456–1464

    PubMed  CAS  Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    Article  PubMed  CAS  Google Scholar 

  • Nabavi S, Nazar RN (2008) U3 snoRNA promoter reflects the RNA’s function in ribosome biogenesis. Curr Genet 54:175–184

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Fujita Y, Katsura K, Maruyama K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol 60:51–68

    Article  PubMed  CAS  Google Scholar 

  • Naoumkina MA, Modolo LV, Huhman DV, Urbanczyk-Wochniak E, Tang Y, Sumner LW, Dixon RA (2010) Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. Plant Cell 22:850–866

    Article  PubMed  CAS  Google Scholar 

  • Newman SM, Tantasawat P, Steffens JC (2011) Tomato polyphenol oxidase B is spatially and temporally regulated during development and in response to ethylene. Molecules 16:493–517

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Ishihara A, Yangita RC, Endo TR, Iwamura H (2005) Three genomes differently contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci USA 45:16490–16495

    Article  CAS  Google Scholar 

  • Overbeek R, Fonstein M, D’Souza M, Pusch G, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96:2896–2901

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    PubMed  CAS  Google Scholar 

  • Périer RC, Junier T, Bonnard C, Bucher P (1999) The eukaryotic promoter database (EPD): recent developments. Nucl Acids Res 27:307–309

    Article  PubMed  Google Scholar 

  • Peters SA, Datema E, Szinay D, van Staveren MJ, Schijlen EGWM, van Haarst JC, Hesselink T, Abma-Henkens MHC, Bai Y, de Jong H et al (2009) Solanum lycopersicum cv. Heinz 1706 chromosome 6: distribution and abundance of genes and retrotransposable elements. Plant J 58:857–869

    Article  PubMed  CAS  Google Scholar 

  • Pichersky E, Bernatzky R, Tanksley SD, Breidenbach RB, Kausch AP, Cashmore AR (1985) Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/b-binding proteins in Lycopersicon esculentum (tomato). Gene 40:247–258

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A (2004) A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci USA 21:8233–8238

    Article  Google Scholar 

  • Qu LH, Meng Q, Zhou H, Chen YQ (2001) Identification of 10 novel snoRNA gene clusters from Arabidopsis thaliana. Nucl Acids Res 29:1623–1630

    Article  PubMed  CAS  Google Scholar 

  • Rattapanone N, Grierson D, Stein M (1977) Ribonucleic acid metabolism during the development and ripening of tomato fruits. Phytochemistry 16:269–633

    Article  Google Scholar 

  • Razdan MK, Mattoo AK (2007) Genetic improvement of Solanaceous crops. Enfield, New Hampshire

    Google Scholar 

  • Rose A, Meier I, Wienand U (1999) The tomato I-box binding factor LeMYB1 is a member of a novel class of myb-like proteins. Plant J 20:641–652

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Scott JE, Li L, Teui-Jung W, Marna DY-N, Yan F, Guo L, Hui-Hsien C, Srinivas A, Daniel AA, Patrick SS (2007) Nearly identical paralogs: implications for maize (Zea mays L.) genome evolution. Genetics 175:429–439

    Google Scholar 

  • Sharma K, Tollervey D (1999) Base pairing between U3 small nucleolar RNA and the 5′ end of 18S rRNA is required for pre-rRNA processing. Mol Cell Biol 19:6012–6019

    PubMed  CAS  Google Scholar 

  • Shaw PJ, Beven AF, Leader DJ, Brown JWS (1998) Localization and processing from a polycistronic precursor of novel snoRNAs in maize. J Cell Sci 111:2121–2128

    PubMed  Google Scholar 

  • Shimura K, Okada A, Okada K, Jikumaru Y, Ko KW, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N (2007) Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem 23:34013–34018

    Article  Google Scholar 

  • Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197

    Article  PubMed  CAS  Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvod JD, Miftahudin MA MAX, Gustafson PJ et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Speirs J, Brady CJ, Grierson D, Lee E (1984) Changes in ribosome organization and messenger RNA abundance in ripening tomato fruits. Aust J Plant Physiol 11:225–233

    Article  CAS  Google Scholar 

  • Srivastava A, Chung SH, Fatima T, Datsenka T, Handa AK, Mattoo AK (2007) Polyamines as anabolic growth regulators revealed by transcriptome analysis and metabolic profiles of tomato fruits engineered to accumulate spermidine and spermine. Plant Biotechnol 24:57–70

    Article  CAS  Google Scholar 

  • Stoebe B, Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15:344–347

    Article  PubMed  CAS  Google Scholar 

  • Sutoh K, Yamauchi D (2003) Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. Plant J 34:635–645

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ (2009) CYP76M7 is an ent-Cassadiene C11{alpha}-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21:3315–3325

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol (in press). doi:10.1093/molbev/msr121

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Tran L-SP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Muruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  CAS  Google Scholar 

  • Uimari A, Strommer J (1997) Myb 26: a MYB-like protein of pea flowers with affinity for promoters of phenylpropanoid genes. Plant J 12:1273–1284

    Article  PubMed  CAS  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  CAS  Google Scholar 

  • Volkov RA, Panchuk II, Schöffl F (2005) Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol Biol 57:487–502

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Josefsson C, Dilkes B, Kirkbride R, Harada J, Comai L (2009) Dosage-dependent deregulation of an AGAMOUS-LIKE gene cluster contributes to interspecific incompatibility. Curr Biol 19:1128–1132

    Article  PubMed  CAS  Google Scholar 

  • Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 13:127–142

    Article  PubMed  CAS  Google Scholar 

  • Weinstein LB, Steitz JA (1999) Guided tours from precursors snoRNA functional snoRNP. Curr Opin Cell Biol 11:378–384

    Article  PubMed  CAS  Google Scholar 

  • Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169:2277–2293

    Article  PubMed  CAS  Google Scholar 

  • Witt I, Kwart M, Gross T, Kaufer NF (1995) The tandem repeat AGGGTAGGGT in the fission yeast is a proximal activation sequence and activates basal transcription mediated by the sequence TGTGACTG. Nucl Acids Res 23:4296–4302

    Article  PubMed  CAS  Google Scholar 

  • Wolf Y, Rogozin IB, Kondrashov AS, Koonin EV (2001) Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res 11:356–372

    Article  PubMed  CAS  Google Scholar 

  • Xu JH, Messing J (2008) Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Proc Natl Acad Sci USA 105:14330–14335

    Article  PubMed  CAS  Google Scholar 

  • Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383

    Article  PubMed  CAS  Google Scholar 

  • Yamagata H, Yonesu K, Hirata A, Aizono Y (2002) TGTCACA motif is a novel cis-regulatory element involved in fruit-specific expression of the cucumisin gene. J Biol Chem 277:11582–11590

    Article  PubMed  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1991) Heat shock proteins affect RNA processing during heat shock response of Saccharomyces cerevisiae. Mol Cell Biol 11:1062–1068

    PubMed  CAS  Google Scholar 

  • Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen JQ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathways in aleurone cells. Plant Physiol 134:1500–1513

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang H, Quan R, Wang X-C, Huang R (2009) Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365–377

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, Costanzo M, Brost RL, Boone C, Hughes TR, Yip CM, Houry WA (2008) Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 180:563–578

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Lu L, Zhang L, Wang A, Wang N, Liang Z, Lu X, Tang K (2009) Molecular evolution of the E8 promoter in tomato and some of its relative wild species. J Biosci 34:71–83

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, NY, pp 97–166

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Marvin Edelman for his constructive comments and edits on the manuscript. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Autar K. Mattoo.

Additional information

R. K. Goyal, V. Kumar and V. Shukla contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, R.K., Kumar, V., Shukla, V. et al. Features of a unique intronless cluster of class I small heat shock protein genes in tandem with box C/D snoRNA genes on chromosome 6 in tomato (Solanum lycopersicum). Planta 235, 453–471 (2012). https://doi.org/10.1007/s00425-011-1518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1518-5

Keywords

Navigation