Skip to main content
Log in

Functional characterization of GPC-1 genes in hexaploid wheat

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In wheat, monocarpic senescence is a tightly regulated process during which nitrogen (N) and micronutrients stored pre-anthesis are remobilized from vegetative tissues to the developing grains. Recently, a close connection between senescence and remobilization was shown through the map-based cloning of the GPC (grain protein content) gene in wheat. GPC-B1 encodes a NAC transcription factor associated with earlier senescence and increased grain protein, iron and zinc content, and is deleted or non-functional in most commercial wheat varieties. In the current research, we identified ‘loss of function’ ethyl methanesulfonate mutants for the two GPC-B1 homoeologous genes; GPC-A1 and GPC-D1, in a hexaploid wheat mutant population. The single gpc-a1 and gpc-d1 mutants, the double gpc-1 mutant and control lines were grown under field conditions at four locations and were characterized for senescence, GPC, micronutrients and yield parameters. Our results show a significant delay in senescence in both the gpc-a1 and gpc-d1 single mutants and an even stronger effect in the gpc-1 double mutant in all the environments tested in this study. The accumulation of total N in the developing grains showed a similar increase in the control and gpc-1 plants until 25 days after anthesis (DAA) but at 41 and 60 DAA the control plants had higher grain N content than the gpc-1 mutants. At maturity, GPC in all mutants was significantly lower than in control plants while grain weight was unaffected. These results demonstrate that the GPC-A1 and GPC-D1 genes have a redundant function and play a major role in the regulation of monocarpic senescence and nutrient remobilization in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DAA:

Days after anthesis

DIC:

Triticum turgidum ssp. dicoccoides (Körn.) Thell

DM:

Dry matter

EMS:

Ethyl methanesulfonate

GPC:

Grain protein content

NAC:

NAM; ATAF1,2; CUC2

NY:

Newe Ya’ar Regional Research Center, Israel

TAU:

Tel Aviv University, Israel

TILLING:

Targeting Induced Lesions IN Genoms

TKW:

Thousand kernel weight

UCD:

University of California, Davis

References

  • Austin RB, Edrich JA, Ford MA, Blackwell RD (1977a) Fate of dry-matter, carbohydrates and C-14 lost from leaves and stems of wheat during grain filling. Ann Bot 41:1309–1321

    CAS  Google Scholar 

  • Austin RB, Ford MA, Edrich JA, Blackwell RD (1977b) The nitrogen economy of winter wheat. J Agric Sci 88:159–167

    Article  Google Scholar 

  • Avivi L (1978) High protein content in wild tetraploid Triticum dicoccoides Korn. In: Ramanujam S (ed) Proceedings of the 5th International Wheat Genetics Symposium, New Delhi, India. Indian Society of Genetics and Plant Breeding, pp 372–380

  • Barneix AJ (2007) Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J Plant Physiol 164:581–590

    Article  CAS  PubMed  Google Scholar 

  • Blake NK, Lanning SP, Martin JM, Sherman JD, Talbert LE (2007) Relationship of flag leaf characteristics to economically important traits in two spring wheat crosses. Crop Sci 47:491–496

    Article  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang CJ, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brevis JC, Dubcovsky J (2010) Effects of the chromosome region including the Gpc-B1 locus on wheat grain and protein yield. Crop Sci 50:93–104

    Article  CAS  Google Scholar 

  • Brevis JC, Morris CF, Manthey F, Dubcovsky J (2010) Effect of the grain protein content locus Gpc-B1 on bread and pasta quality. J Cereal Sci 51:357–365

    Article  CAS  Google Scholar 

  • Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    Article  CAS  Google Scholar 

  • Cantu D, Pearce S, Distelfeld A, Christiansen M, Uauy C, Akhunov E, Fahima T, Dubcovsky J (2011) Effect of the down-regulation of the high grain protein content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics 12:492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carter AH, Santra DK, Kidwell KK (2012) Assessment of the effects of the Gpc-B1 allele on senescence rate, grain protein concentration and mineral content in hard red spring wheat (Triticum aestivum L.) from the Pacific Northwest Region of the USA. Plant Breed 131:62–68

    Article  CAS  Google Scholar 

  • Christopher JT, Manschadi AM, Hammer GL, Borrell AK (2008) Developmental and physiological traits associated with high yield and stay green phenotype in wheat. Aust J Agric Res 59:354–364

    Article  Google Scholar 

  • Dalling MJ, Boland G, Wilson JH (1976) Relation between acid proteinase activity and distribution of nitrogen during grain development in wheat. Aust J Plant Physiol 3:721–730

    Article  CAS  Google Scholar 

  • Derkx AP, Orford S, Griffiths S, Foulkes MJ, Hawkesford MJ (2012) Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning. J Integr Plant Biol 54:555–566

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  Google Scholar 

  • FAO (2009) FAOSTAT. http://faostat3.fao.org/home/index.html#DOWNLOAD. Food and Agriculture Organization of the United Nations, Rome. Accessed 15 Aug 2013

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J 5:192–206

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    Article  CAS  PubMed  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    CAS  PubMed  Google Scholar 

  • Hagenblad J, Asplund L, Balfourier F, Ravel C, Leino MW (2012) Strong presence of the high grain protein content allele of NAM-B1 in Fennoscandian wheat. Theor Appl Genet 125:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Joppa LR, Cantrell RG (1990) Chromosomal location of genes for grain protein content in wild tetraploid wheat. Crop Sci 30:1059–1064

    Article  CAS  Google Scholar 

  • Joppa LR, Hareland GA, Cantrell RG (1991) Quality characteristics of the Langdon durum-dicoccoides chromosome substitution lines. Crop Sci 31:1513–1517

    Article  Google Scholar 

  • Joppa LR, Du CH, Hart GE, Hareland GA (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    Article  CAS  Google Scholar 

  • Jukanti AK, Heidlebaugh NM, Parrott DL, Fischer IA, McInnerney K, Fischer AM (2008) Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation. New Phytol 177:333–349

    CAS  PubMed  Google Scholar 

  • Kade M, Barneix AJ, Olmos S, Dubcovsky J (2005) Nitrogen uptake and remobilization in tetraploid ‘Langdon’ durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1. Plant Breed 124:343–349

    Article  CAS  Google Scholar 

  • Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J (2007) In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Res 102:22–32

    Article  Google Scholar 

  • Kumar J, Jaiswal V, Kumar A, Kumar N, Mir RR, Kumar S, Dhariwal R, Tyagi S, Khandelwal M, Prabhu KV, Prasad R, Balyan HS, Gupta PK (2011) Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crop Res 123:226–233

    Article  Google Scholar 

  • Mesfin A, Frohberg RC, Anderson JA (1999) RFLP markers associated with high grain protein from Trititcum turgidum L. var. dicoccoides introgressed into Hard Red Spring wheat. Crop Sci 39:508–513

    Article  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    CAS  PubMed  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51:447–458

    Article  CAS  PubMed  Google Scholar 

  • Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194

    Article  CAS  Google Scholar 

  • Simpson RJ, Lambers H, Dalling MJ (1983) Nitrogen redistribution during grain-growth in wheat (Triticum-aestivum L.).4. Development of a quantitative model of the translocation of nitrogen to the grain. Plant Physiol 71:7–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, non transgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  CAS  PubMed  Google Scholar 

  • Tabbita F, Lewis S, Vouilloz JP, Ortega MA, Kade M, Abbate PE, Barneix AJ (2013) Effects of the Gpc-B1 locus on high grain protein content introgressed into Argentinean wheat germplasm. Plant Breed 132:48–52

    Article  CAS  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Brevis JC, Dubcovsky J (2006a) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006b) A NAC gene regulating senescence improves grain protein, zinc and irons content in wheat. Science 314:1298–1300

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115–124

    Article  PubMed Central  PubMed  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274

    Article  CAS  PubMed  Google Scholar 

  • Zhou CE, Han L, Pislariu C, Nakashima J, Fu CX, Jiang QZ, Quan L, Blancaflor EB, Tang YH, Bouton JH, Udvardi M, Xia GM, Wang ZY (2011) From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol 157:1483–1496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bat-Sheva Ben-Zvi, Dr. Chingiz K. Alekperov, Assaf Avneri, Isaac Levian, Francine Paraiso, Danna Chan, Anna Amen, Mike Steine, and Dayna Loeffler for excellent technical assistance. T. Fahima and J. Dubcovsky acknowledge support from United States-Israel Binational Science Foundation (Grant 2007194). J. Dubcovsky acknowledges support from the Howard Hughes Medical Institute and the Gordon and Betty Moore foundation grant GBMF3031, and from the Agricultural and Food Research Initiative Grant 2011-68002-30029 (Triticeae-CAP) from USDA-NIFA. A. Distelfeld acknowledged support from the Marie Curie International Reintegration Grant number PIRG08-GA-2010-277036 and from the ISRAEL SCIENCE FOUNDATION (grants No. 999/12 and 1824/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Distelfeld.

Additional information

R. Avni and R. Zhao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 460 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avni, R., Zhao, R., Pearce, S. et al. Functional characterization of GPC-1 genes in hexaploid wheat. Planta 239, 313–324 (2014). https://doi.org/10.1007/s00425-013-1977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1977-y

Keywords

Navigation