Skip to main content
Log in

Mental subtraction and multiplication recruit both phonological and visuospatial resources: evidence from a symmetric dual-task design

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Previous studies pointed out a selective interaction between different working memory subsystems (i.e., phonological and visuospatial) and arithmetic operations (i.e., multiplication and subtraction). This was interpreted to support the idea that multiplication and subtraction predominantly rely on a phonologically or spatially organized number code, respectively. Here, we investigated this idea in two groups (multiplication and subtraction group) using a dual-task paradigm. Going beyond previous studies, we carefully controlled and balanced the difficulty of both working memory and calculation tasks within and across participants. This allowed us to test the reciprocal impact of calculations on working memory. We observed no selective interaction between different working memory subsystems and arithmetic operations. Instead, both types of arithmetic operations were impaired by both types of concurrent working memory tasks. Likewise, both types of working memory tasks were impaired by both types of concurrent arithmetic. Our findings suggest that multiplication and subtraction depend on both phonological and visuospatial codes and highlight the importance of balancing task demands within and between participants in the context of dual-task studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Awh, E., Vogel, E. K., & Oh, S.-H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201–208. doi:10.1016/j.neuroscience.2005.08.023.

    Article  PubMed  Google Scholar 

  • Baddeley, A. D. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423. http://www.ncbi.nlm.nih.gov/pubmed/11058819.

  • Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In: The psychology of learning and motivation: advances in research and theory (Vol. 8, pp. 47–89).

  • Berteletti, I., Prado, J., & Booth, J. R. (2014). Children with mathematical learning disability fail in recruiting verbal and numerical brain regions when solving simple multiplication problems. Cortex, 57, 143–155. doi:10.1016/j.cortex.2014.04.001.

    Article  PubMed  Google Scholar 

  • Campbell, J. I. D. (1987). Production, verification, and priming of multiplication facts. Memory and Cognition, 15(4), 349–64. http://www.ncbi.nlm.nih.gov/pubmed/3670055.

  • Campbell, J. I. D., & Metcalfe, A. W. S. (2008). Arabic digit naming speed: task context and redundancy gain. Cognition, 107(1), 218–237. doi:10.1016/j.cognition.2007.10.001.

    Article  PubMed  Google Scholar 

  • De Rammelaere, S., Stuyven, E., & Vandierendonck, A. (2001). Verifying simple arithmetic sums and products: are the phonological loop and the central executive involved? Memory and Cognition, 29(2), 267–73. http://www.ncbi.nlm.nih.gov/pubmed/11352209.

  • Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(2), 314–326. doi:10.1037//0278-7393.21.2.314.

    Article  PubMed  Google Scholar 

  • Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 2(33), 219–250.

    Article  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487–506. doi:10.1080/02643290244000239.

    Article  PubMed  Google Scholar 

  • Domahs, F., Delazer, M., & Nuerk, H. C. (2006). What makes multiplication facts difficult. Experimental Psychology (formerly “Zeitschrift für Experimentelle Psychologie”), 53((4), 275–282. doi:10.1027/1618-3169.53.4.275.

    Article  Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245. doi:10.1037//0033-295X.102.2.211.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556. doi:10.1038/nn1066.

    Article  PubMed  Google Scholar 

  • Fischer, M. H., & Knops, A. (2014). Attentional cueing in numerical cognition. Frontiers in Psychology,. doi:10.3389/fpsyg.2014.00987.

    Google Scholar 

  • Fisk, A. D., Derrick, W. L., & Schneider, W. (1986). A methodological assessment and evaluation of dual-task paradigms. Current Psychology, 5(4), 315–327. doi:10.1007/BF02686599.

    Article  Google Scholar 

  • Fürst, A. J., & Hitch, G. J. (2000). Separate roles for executive and phonological components of working memory in mental arithmetic. Memory and Cognition, 28(5), 774–782. http://www.ncbi.nlm.nih.gov/pubmed/10983451.

  • Göbel, S. M., Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H. C. (2014). Language affects symbolic arithmetic in children: the case of number word inversion. Journal of Experimental Child Psychology, 119, 17–25. doi:10.1016/j.jecp.2013.10.001.

    Article  PubMed  Google Scholar 

  • Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., & Ebner, F. (2013). The function of the left angular gyrus in mental arithmetic: evidence from the associative confusion effect. Human Brain Mapping, 34, 1013–1024. doi:10.1002/hbm.21489.

    Article  PubMed  Google Scholar 

  • Guida, A., Gobet, F., Tardieu, H., & Nicolas, S. (2012). How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquisition: a two-stage framework. Brain and Cognition, 79(3), 221–244. doi:10.1016/j.bandc.2012.01.010.

    Article  PubMed  Google Scholar 

  • Guida, A., Tardieu, H., & Nicolas, S. (2009). The personalisation method applied to a working memory task: evidence of long-term working memory effects. European Journal of Cognitive Psychology, 21(6), 862–896. doi:10.1080/09541440802236369.

    Article  Google Scholar 

  • Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic : evidence from eye movements on a blank screen. Frontiers in Psychology,. doi:10.3389/fpsyg.2015.00012.

    PubMed  PubMed Central  Google Scholar 

  • Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6(2), 65–70. doi:10.2307/4615733.

    Google Scholar 

  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448. doi:10.1038/nrn1684.

    Article  PubMed  Google Scholar 

  • Imbo, I., & LeFevre, J.-A. (2010). The role of phonological and visual working memory in complex arithmetic for Chinese- and Canadian-educated adults. Memory and Cognition, 38(2), 176–185. doi:10.3758/MC.38.2.176.

    Article  PubMed  Google Scholar 

  • Imbo, I., & Vandierendonck, A. (2007). The role of phonological and executive working memory resources in simple arithmetic strategies. European Journal of Cognitive Psychology, 19(6), 910–933. doi:10.1080/09541440601051571.

    Article  Google Scholar 

  • Jones, D., Farrand, P., Stuart, G., & Morris, N. (1995). Functional equivalence of verbal and spatial information in serial short-term memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(4), 1008–1018.

    Article  PubMed  Google Scholar 

  • Kirk, R. E. (2013). Experimental design—procedures for the behavioral sciences (4th ed.). Los Angeles: Sage.

    Google Scholar 

  • Klein, E., Suchan, J., Moeller, K., Karnath, H. O., Knops, A., Wood, G., et al. (2014). Considering structural connectivity in the triple code model of numerical cognition-differential connectivity for magnitude processing and arithmetic facts. Brain, Structure and Function.,. doi:10.1007/s00429-014-0951-1.

    Google Scholar 

  • Knops, A. (2006). On the structure and neural correlates of the numerical magnitude representation and its influence in the assesment of verbal working memory. Unpublished Doctoral Dissertation. University Achen, Germany.

  • Lee, K.-M. (2000). Cortical areas differentially involved in multiplication and subtraction: a functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of Neurology, 48(4), 657–61. http://www.ncbi.nlm.nih.gov/pubmed/11026450.

  • Lee, K.-M., & Kang, S.-Y. (2002). Arithmetic operation and working memory: differential suppression in dual tasks. Cognition, 83(3), B63–B68. http://www.ncbi.nlm.nih.gov/pubmed/11934408.

  • LeFevre, J.-A., DeStefano, D., Coleman, B., & Shanahan, T. (2005). Mathematical cognition and working memory (pp. 361–378). New York: Psychology Press.

    Google Scholar 

  • Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815–840.

    Google Scholar 

  • McCloskey, M. (1992). Cognitive mechanisms in numerical processing: evidence from acquired dyscalculia. Cognition, 44(1–2), 107–157. doi:10.1016/0010-0277(92)90052-J.

    Article  PubMed  Google Scholar 

  • Moeller, K., Klein, E., Fischer, M. H., Nuerk, H.-C., & Willmes, K. (2011). Representation of multiplication facts-evidence for partial verbal coding. Behavioral and Brain Functions, 7(1), 25. doi:10.1186/1744-9081-7-25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noori, N., & Itti, L. (2011). Eye-movement signatures of abstract mental tasks. In B. Kokinov, A. Karmiloff-Smith, & N. J. Nersessian (Eds.), Proceedings of the European Conference on Cognitive Science (EuroCogSci 2011) (pp 110:1–110:6). Sofia, Bulgaria: New Bulgarian University Press.

  • Nuerk, H. C., Weger, U., & Willmes, K. (2005). Language effects in magnitude comparison: small, but not irrelevant. Brain and Language, 92, 262–277. doi:10.1016/j.bandl.2004.06.107.

    Article  PubMed  Google Scholar 

  • Oberauer, K. (2002). Access to information in working memory: exploring the focus of attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(3), 411–421. doi:10.1037//0278-7393.28.3.411.

    Article  PubMed  Google Scholar 

  • Parkman, J. M. (1972). Temporal aspects of simple multiplication and comparison. Journal of Experimental Psychology, 95(2), 437–444. doi:10.1037/h0033662.

    Article  Google Scholar 

  • Peirce, J. W. (2007). PsychoPy-Psychophysics software in Python. The Journal of Neuroscience Methods, 162(1–2), 8–13. doi:10.1016/j.jneumeth.2006.11.017.

    Article  PubMed  Google Scholar 

  • Prado, J., Mutreja, R., & Booth, J. R. (2014). Developmental dissociation in the neural responses to simple multiplication and subtraction problems. Developmental Science, 17(4), 537–552. doi:10.1111/desc.12140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prado, J., Mutreja, R., Zhang, H., Mehta, R., Desroches, A. S., Minas, J. E., & Booth, J. R. (2011). Distinct representations of subtraction and multiplication in the neural systems for numerosity and language. Human Brain Mapping, 32(11), 1932–1947. doi:10.1002/hbm.21159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera, S. M., Reiss, a L, Eckert, Ma., & Menon, V. (2005). Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15(11), 1779–1790. doi:10.1093/cercor/bhi055.

    Article  PubMed  Google Scholar 

  • Rosenberg-Lee, M., Chang, T. T., Young, C. B., Wu, S., & Menon, V. (2011). Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: a cytoarchitectonic mapping study. Neuropsychologia, 49(9), 2592–2608. doi:10.1016/j.neuropsychologia.2011.04.035.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47(13), 2859–2865. doi:10.1016/j.neuropsychologia.2009.06.009.

    Article  PubMed  Google Scholar 

  • Schuchardt, K., Maehler, C., & Hasselhorn, M. (2008). Working memory deficits in children with specific learning disorders. Journal of Learning Disabilities, 41(6), 514–523. doi:10.1177/0022219408317856.

    Article  PubMed  Google Scholar 

  • Schwarz, W., & Stein, F. (1998). On the temporal dynamics of digit comparison processes. Journal of Experimental Psychology. Learning, Memory, and Cognition, 24(5), 1275–1293. doi:10.1037//0278-7393.24.5.1275.

    Article  Google Scholar 

  • Seitz, K., & Schumann-Hengsteler, R. (2000). Mental multiplication and working memory. European Journal of Cognitive Psychology, 12(4), 552–570. doi:10.1080/095414400750050231.

    Article  Google Scholar 

  • Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary subtraction. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29(6), 1339–1352. doi:10.1037/0278-7393.29.6.1339.

    Article  PubMed  Google Scholar 

  • Shalev, R. S., Auerbach, J., Manor, O., & Gross-Tsur, V. (2000). Developmental dyscalculia: prevalence and prognosis. European Child and Adolescent Psychiatry, 9 Suppl 2(Dc), II58–64. http://www.ncbi.nlm.nih.gov/pubmed/11138905.

  • Sigman, M., & Dehaene, S. (2005). Parsing a cognitive task: a characterization of the mind’s bottleneck. PLoS Biology, 3(2), e37. doi:10.1371/journal.pbio.0030037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigman, M., & Dehaene, S. (2008). Brain mechanisms of serial and parallel processing during dual-task performance. The Journal of Neuroscience, 28(30), 7585–7598. doi:10.1523/JNEUROSCI.0948-08.2008.

    Article  PubMed  Google Scholar 

  • Silk, T. J., Bellgrove, Ma., Wrafter, P., Mattingley, J. B., & Cunnington, R. (2010). Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus. NeuroImage, 53(2), 718–724. doi:10.1016/j.neuroimage.2010.06.068.

    Article  PubMed  Google Scholar 

  • Sokal, R. R., & Rohlf, J. F. (1981). Biometry: the principles and practice of statistics in biological research (2nd ed.). San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Stazyk, E. H., Ashcraft, M. H., & Hamann, M. S. (1982). A network approach to mental multiplication. Journal of Experimental Psychology. Learning, Memory, and Cognition, 8(4), 320–335. doi:10.1037//0278-7393.8.4.320.

    Article  Google Scholar 

  • Stoianov, I., Zorzi, M., & Umiltà, C. (2004). The role of semantic and symbolic representations in arithmetic processing: insights from simulated dyscalculia in a connectionist model. Cortex, 40, 194–196. doi:10.1016/S0010-9452(08)70948-1.

    Article  PubMed  Google Scholar 

  • Tschentscher, N., & Hauk, O. (2014). How are things adding up? Neural differences between arithmetic operations are due to general problem solving strategies. NeuroImage, 92, 369–380. doi:10.1016/j.neuroimage.2014.01.061.

    Article  PubMed  Google Scholar 

  • Van der Sluis, S., van der Leij, A., & de Jong, P. F. (2005). Working memory in dutch children with reading- and arithmetic-related LD. Journal of Learning Disabilities, 38(3), 207–221. doi:10.1177/00222194050380030301.

    Article  PubMed  Google Scholar 

  • Van Harskamp, N. J., & Cipolotti, L. (2001). Selective impairments for addition, subtraction and multiplication. Implications for the organisation of arithmetical facts. Cortex, 37(3), 363–88. http://www.ncbi.nlm.nih.gov/pubmed/11485063.

  • Zorzi, M., Stoianov, I., & Umiltà, C. (2005). Computational Modeling of Numerical Cognition. In J. I. D. Campbell (Ed.), The Handbook of Mathematical Cognition (pp. 67–83).

Download references

Acknowledgments

This work was supported by grant a grant of Deutsche Forschungsgemeinschaft to André Knops (KN 959/2-1) in support of Seda Cavdaroglu. We thank two anonymous reviewers and Robert Hughes for their helpful comments on a previous version of the manuscript. We would also like to thank Curren Katz for her valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seda Cavdaroglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavdaroglu, S., Knops, A. Mental subtraction and multiplication recruit both phonological and visuospatial resources: evidence from a symmetric dual-task design. Psychological Research 80, 608–624 (2016). https://doi.org/10.1007/s00426-015-0667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0667-8

Keywords

Navigation