Skip to main content
Log in

The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Hox and ParaHox genes are implicated in axial patterning of cnidarians and bilaterians, and are thought to have originated by tandem duplication of a single “ProtoHox” gene followed by duplication of the resultant gene cluster. It is unclear what the ancestral role of Hox/ParaHox genes was before the divergence of Cnidaria and Bilateria, or what roles the postulated ProtoHox gene(s) played. Here we describe the full coding region, spatial expression and function of Trox-2, the single Hox/ParaHox-type gene identified in Trichoplax adhaerens (phylum Placozoa) and either a candidate ProtoHox or a ParaHox gene. Trox-2 is expressed in a ring around the periphery of Trichoplax, in small cells located between the outer margins of the upper and lower epithelial cell layers. Inhibition of Trox-2 function, either by uptake of morpholino antisense oligonucleotides or by RNA interference, causes complete cessation of growth and binary fission. We speculate that Trox-2 functions within a hitherto unrecognized population of possibly multipotential peripheral stem cells that contribute to differentiated cells at the epithelial boundary of Trichoplax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a, b

Similar content being viewed by others

References

  • Blackstone NW, Jasker BD (2003) Phylogenetic considerations of clonality, coloniality, and mode of germline development in animals. J Exp Zool Part B Mol Dev Evol 297:35–47

    Google Scholar 

  • Bosch TC, David CN (1984) Growth regulation in Hydra: relationship between epithelial cell cycle length and growth rate. Dev Biol 104:161–171

    CAS  PubMed  Google Scholar 

  • Brooke NM, Garcia-Fernandez J, Holland PWH (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392:920–922

    Article  CAS  PubMed  Google Scholar 

  • Cartwright P, Bowsher J, Buss LW (1999) Expression of a Hox gene, Cnox-2, and the division of labor in a colonial hydroid. Proc Natl Acad Sci USA 96:2183–2186

    Article  CAS  PubMed  Google Scholar 

  • Ender A, Schierwater B (2003) Placozoa are not derived cnidarians: evidence from molecular morphology. Mol Biol Evol 20:130–134

    Article  CAS  PubMed  Google Scholar 

  • Ferrier DE, Holland PWH (2001) Sipunculan ParaHox genes. Evol Dev 3:263–270

    Article  CAS  PubMed  Google Scholar 

  • Ferrier DE, Holland PWH (2002) Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. Mol Phylogenet Evol 24:412–417

    Article  CAS  PubMed  Google Scholar 

  • Finnerty JR, Martindale MQ (1999) Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria. Evol Dev 1:16–23

    Article  CAS  PubMed  Google Scholar 

  • Finnerty JR, Paulson D, Burton P, Pang K, Martindale MQ (2003) Early evolution of a homeobox gene: the parahox gene Gsx in the Cnidaria and the Bilateria. Evol Dev 5:331–345

    CAS  PubMed  Google Scholar 

  • Gauchat D, Mazet F, Berney C, Schummer M, Kreger S, Pawlowski J, Galliot B (2000) Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proc Natl Acad Sci USA 97E:4493–4498

    Article  Google Scholar 

  • Grell KG (1972) Eibildung und Furchung von Trichoplax adhaerens F.E. Schulze (Placozoa). Z Morphol Tiere 73:297–314

    Google Scholar 

  • Grell KG (1983) Ein neues Kulturverfahren für Trichoplax adhaerens F.E. Schulze. Z Naturforsch 38c:1072

    Google Scholar 

  • Gröger H, Callaerts P, Gehring WJ, Schmid V (1999) Gene duplication and recruitment of a specific tropomyocin to striated muscle cells in the jellyfish, Podocoryne carnea. J Exp Zool 285:378–386

    Article  PubMed  Google Scholar 

  • Kuhn K, Streit B, Schierwater B (1999) Isolation of Hox genes from the scyphozoan Cassiopeia xamachana: implications for the early evolution of Hox genes. J Exp Zool 285:63–75

    Article  CAS  PubMed  Google Scholar 

  • Li YX, Farrell MJ, Liu R, Mohanty N, Kirby ML (2000) Double-stranded RNA injection produces null phenotypes in zebrafish. Dev Biol 217:394–405

    Article  CAS  PubMed  Google Scholar 

  • Martinelli C, Spring J (2003) Distinct expression patterns of the two T-box homologues Brachyury and Tbx2/3 in the placozoan Trichoplax adhaerens. Dev Genes Evol 213:492–499

    PubMed  Google Scholar 

  • Morcos PA (2001) Achieving efficient delivery of Morpholino oligos in cultured cells. Genesis 30:94–102

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Yanze N, Schmid V, Spring J (1999) The homeobox gene Otx of the jellyfish Podocoryne carnea: role of a head gene in striated muscle and evolution. Dev Biol 216:582–593

    CAS  PubMed  Google Scholar 

  • Partridge M, Vincent A, Matthews P, Puma J, Stein D, Summerton J (1996) A simple method for delivering morpholino antisense oligos into the cytoplasm of cells. Antisense Nucleic Acid Drug Dev 169

  • Pearse VB, Uehara T, Miller RL (1994) Birefringent granules in placozoans (Trichoplax adhaerens). Trans Am Microsc Soc 113:385–389

    Google Scholar 

  • Plaza S, Prince F, Jaeger J, Kloter U, Flister S, Benassayag C, Cribbs D, Gehring WJ (2001) Molecular basis for the inhibition of Drosophila eye development by Antennapedia. Embo J 20:802–811

    Article  CAS  PubMed  Google Scholar 

  • Rassat J, Ruthmann A (1979) Trichoplax adhaerens F.E. Schulze (Placozoa) in the scanning electron microscope. Zoomorphology 93:59–72

    Google Scholar 

  • Rokas A, King N, Finnerty J, Carroll SB (2003) Conflicting phylogenetic signals at the base of the metazoan tree. Evol Dev 5:346–359

    CAS  PubMed  Google Scholar 

  • Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917

    Article  PubMed  Google Scholar 

  • Sarkar IN, Thornton JW, Planet PJ, Figurski DH, Schierwater B, DeSalle R (2002) An automated phylogenetic key for classifying homeoboxes. Mol Phylogenet Evol 24:388–399

    Article  PubMed  Google Scholar 

  • Schierwater B, Desalle R (2001) Current problems with the zootype and the early evolution of Hox genes. J Exp Zool 291:169–174

    Article  CAS  PubMed  Google Scholar 

  • Schierwater B, Kuhn K (1998) Homology of Hox genes and the zootype concept in early metazoan evolution. Mol Phylogenet Evol 9:375–381

    Article  CAS  PubMed  Google Scholar 

  • Schierwater B, Dellaporta S, DeSalle R (2002) Is the evolution of Cnox-2 Hox/ParaHox genes “multicolored” and “polygenealogical?” Mol Phylogenet Evol 24:374–378

    Google Scholar 

  • Schuchert P (1993) Trichoplax adhaerens (phylum Placozoa) has cells that react with antibodies against the neuropeptide RFamide. Acta Zool (Stockholm) 74:115–117

    Google Scholar 

  • Schwartz V (1984) Das radiopolare Differenzierungsmuster bei Trichoplax adhaerens F.E. Schulze (Placozoa). Z Naturforsch 39c:818–832

    Google Scholar 

  • Shenk MA, Bode HR, Steele RE (1993) Expression of Cnox-2, a HOM/HOX homeobox gene in hydra, is correlated with axial pattern formation. Development 117:657–667

    CAS  PubMed  Google Scholar 

  • Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation and properties. Antisense Nucleic Acid Drug Dev 187

    Google Scholar 

  • Summerton J, Stein D, Huang SB, Matthews P, Weller D, Partridge M (1997) Morpholino and phosphorothioate antisense oligomers compared in cell-free and cell-system. Antisense Nucleic Acid Drug Dev 63

  • Syed T, Schierwater B (2002) Trichoplax adhaerens: discovered as a missing link, forgotten as a hydrozoan, re-discovered as a key to metazoan evolution. Vie Milieu 52:177–187

    Google Scholar 

  • Yanze N, Spring J, Schmidli C, Schmid V (2001) Conservation of Hox/ParaHox-related genes in the early development of a cnidarian. Dev Biol 236:89–98

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Science Foundation, (DFG Schi 277/10-2), the Human Frontier Science Program (HFSP RGP0221/2001-M), and the Graduiertenförderung Niedersachsen (fellowship to W.J.). We are grateful to Jutta Bunnenberg for technical assistance, and two anonymous reviewers for valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Schierwater.

Additional information

Edited by D. Tautz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakob, W., Sagasser, S., Dellaporta, S. et al. The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 214, 170–175 (2004). https://doi.org/10.1007/s00427-004-0390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-004-0390-8

Keywords

Navigation