Skip to main content
Log in

Hypoblast controls mesoderm generation and axial patterning in the gastrulating rabbit embryo

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Gastrulation in higher vertebrate species classically commences with the generation of mesoderm cells in the primitive streak by epithelio-mesenchymal transformation of epiblast cells. However, the primitive streak also marks, with its longitudinal orientation in the posterior part of the conceptus, the anterior-posterior (or head-tail) axis of the embryo. Results obtained in chick and mouse suggest that signals secreted by the hypoblast (or visceral endoderm), the extraembryonic tissue covering the epiblast ventrally, antagonise the mesoderm induction cascade in the anterior part of the epiblast and thereby restrict streak development to the posterior pole (and possibly initiate head development anteriorly). In this paper we took advantage of the disc-shape morphology of the rabbit gastrula for defining the expression compartments of the signalling molecules Cerberus and Dickkopf at pre-gastrulation and early gastrulation stages in a mammal other than the mouse. The two molecules are expressed in novel expression compartments in a complementary fashion both in the hypoblast and in the emerging primitive streak. In loss-of-function experiments, carried out in a New-type culturing system, hypoblast was removed prior to culture at defined stages before and at the beginning of gastrulation. The epiblast shows a stage-dependent and topographically restricted susceptibility to express Brachyury, a T-box gene pivotal for mesoderm formation, and to transform into (histologically proven) mesoderm. These results confirm for the mammalian embryo that the anterior-posterior axis of the conceptus is formed first as a molecular prepattern in the hypoblast and then irrevocably fixed, under the control of signals secreted from the hypoblast, by epithelio-mesenchymal transformation (primitive streak formation) in the epiblast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ang SL, Wierda A, Wong D, Stevens KA, Cascio S, Rossant J, Zaret KS (1993). The formation and maintenance of the definitive endoderm lineage in the mouse—involvement of HNF3/forkhead proteins. Development 119:1301–1315

    CAS  PubMed  Google Scholar 

  • Arnold SJ, Stappert J, Bauer A, Kispert A, Herrmann BG Kemler R (2000) Brachyury is a target gene of the Wnt/beta-catenin signaling pathway. Mech Dev 91:249–258

    Article  CAS  PubMed  Google Scholar 

  • Barnes JD, Crosby JL, Jones CM, Wright CVE, Hogan BLM (1994) Embryonic expression of lim-1, the mouse homolog of Xenopus XLim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev Biol 161:168–178

    Article  PubMed  Google Scholar 

  • Beddington RS, Robertson EJ (1998) Anterior patterning in mouse. Trends Genet 14:277–284

    Article  CAS  PubMed  Google Scholar 

  • Beddington RS, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96:195–209

    Article  CAS  PubMed  Google Scholar 

  • Bellairs R (1986) The primitive streak. Anat Embryol 174:1–14

    CAS  PubMed  Google Scholar 

  • Belo JA, Bouwmeester T, Leyns L, Kertesz N, Gallo M, Follettie M, De Robertis EM (1997) Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech Dev 68:45–57

    Article  CAS  PubMed  Google Scholar 

  • Belo JA, Bachiller D, Agius E, Kemp C, Borges AC, Marques S, Piccolo S, De Robertis EM (2000) Cerberus-like is a secreted BMP and nodal antagonist not essential for mouse development. Genesis 26:265–270

    Article  CAS  PubMed  Google Scholar 

  • Bertocchini F, Stern CD (2002) The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev Cell 3:735–744

    Article  CAS  PubMed  Google Scholar 

  • Biben C, Stanley E, Fabri L, Kotecha S, Rhinn M, Drinkwater C, Lah M, Wang CC, Nash A, Hilton D, Ang SL, Mohun T, Harvey RP (1998) Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev Biol 194:135–151

    Article  CAS  PubMed  Google Scholar 

  • Blum M, Gaunt SJ, Cho KWY, Blumberg B, Steinbeisser H, Bittner D, De Robertis EM (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester T, Kim SH, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–601

    Article  CAS  PubMed  Google Scholar 

  • Callebaut M., Van Nueten E, Bortier H, Harrisson F (2003) Positional information by Rauber’s sickle and a new look at the mechanisms of primitive streak initiation in avian blastoderms. J Morphol 255:315–327

    Article  PubMed  Google Scholar 

  • Chapman SC, Schubert FR, Schoenwolf GC, Lumsden A (2002). Analysis of spatial and temporal gene expression patterns in blastula and gastrula stage chick embryos. Dev Biol 245:187–199

    Article  CAS  PubMed  Google Scholar 

  • Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928

    CAS  PubMed  Google Scholar 

  • Filosa S, Rivera-Perez JA, Gomez AP, Gansmuller A, Sasaki H, Behringer RR, Ang SL (1997) Goosecoid and HNF-3beta genetically interact to regulate neural tube patterning during mouse embryogenesis. Development 124:2843–2854

    CAS  PubMed  Google Scholar 

  • Fischer A, Viebahn C, Blum M (2002) FGF8 acts as a right determinant during establishment of the left-right axis in the rabbit. Curr Biol 12:1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Foley AC, Skromne I, Stern CD (2000) Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 127:3839–3854

    CAS  PubMed  Google Scholar 

  • Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  CAS  PubMed  Google Scholar 

  • Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat 154:8–20

    CAS  PubMed  Google Scholar 

  • Huber O, Bierkamp C, Kemler R (1996) Cadherins and catenins in development. Curr Opin Cell Biol 8:685–691

    Article  CAS  PubMed  Google Scholar 

  • Idkowiak J, Weisheit G, Viebahn C (2004) Polarity in the rabbit embryo. Semin Cell Dev Biol 15:607–617

    Article  CAS  PubMed  Google Scholar 

  • Kazanskaya O, Glinka A, Niehrs C (2000) The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning. Development 127:4981–4992

    CAS  PubMed  Google Scholar 

  • Kimura C, Yoshinaga K, Tian E, Suzuki M, Aizawa S, Matsuo I (2000) Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev Biol 225:304–321

    Article  CAS  PubMed  Google Scholar 

  • King T, Brown NA (1999) Developmental biology. Antagonists on the left flank. Nature 401:222–223

    Article  CAS  PubMed  Google Scholar 

  • Knoetgen H, Teichmann U, Wittler L, Viebahn C, Kessel M (2000) Anterior neural induction by nodes from rabbits and mice. Dev Biol 225:370–380

    Article  CAS  PubMed  Google Scholar 

  • Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, Brown DE, Guyot D, Mays G, Leiby K, Chang B, Duong T, Goodearl AD, Gearing DP, Sokol SY, McCarthy SA (1999) Functional and structural diversity of the human Dickkopf gene family. Nature 401:243–251

    Article  PubMed  Google Scholar 

  • Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365

    Article  CAS  PubMed  Google Scholar 

  • Lowe LA, Supp DM, Sampath K, Yokoyama T, Wright CVE, Potter SS, Overbeek P, Kuehn MR (1996) Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381:158–161

    Article  CAS  PubMed  Google Scholar 

  • Meno C, Saijoh Y, Fujii H, Ikeda M, Yokoyama T, Yokoyama M, Toyoda Y, Hamada H (1996) Left-right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature 381:151–155

    Article  CAS  PubMed  Google Scholar 

  • Monaghan AP, Kaestner KH, Grau E, Schütz G (1993) Postimplantation expression patterns indicate a role for the mouse forkhead/hnf-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119:567–578

    CAS  PubMed  Google Scholar 

  • New DAT (1955) A new technique for the cultivation of the chick embryo in vitro. J Embryol Exp Morphol 3:326–331

    Google Scholar 

  • Oulad-Abdelghani M, Chazaud C, Bouillet P, Mattei MG, Dolle P, Chambon P (1998) Stra3/lefty, a retinoic acid-inducible novel member of the transforming growth factor-beta superfamily. Int J Dev Biol 42:23–32

    CAS  PubMed  Google Scholar 

  • Pearce JJ, Penny G, Rossant J (1999) A mouse cerberus/Dan-related gene family. Dev Biol 209:98–110

    Article  CAS  PubMed  Google Scholar 

  • Perea-Gomez A, Lawson KA, Rhinn M, Zakin L, Brulet P, Mazan S, Ang SL (2001a) Otx2 is required for visceral endoderm movement and for the restriction of posterior signals in the epiblast of the mouse embryo. Development 128:753–765

    CAS  PubMed  Google Scholar 

  • Perea-Gomez A, Rhinn M, Ang SL (2001b) Role of the anterior visceral endoderm in restricting posterior signals in the mouse embryo. Int J Dev Biol 45:311–320

    CAS  PubMed  Google Scholar 

  • Perea-Gomez A, Vella FD, Shawlot W, Oulad-Abdelghani M, Chazaud C, Meno C, Pfister V, Chen L, Robertson E, Hamada H, Behringer RR, Ang SL (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3:745–756

    Article  CAS  PubMed  Google Scholar 

  • Perea-Gomez A, Camus A, Moreau A, Grieve K, Moneron G, Dubois A, Cibert C, Collignon J (2004) Initiation of gastrulation in the mouse embryo is preceded by an apparent shift in the orientation of the anterior-posterior axis. Curr Biol 14:197–207

    Article  CAS  PubMed  Google Scholar 

  • Pöpperl H, Schmidt C, Wilson V, Hume CR, Dodd J, Krumlauf R, Beddington RSP (1997) Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development 124:2997–3005

    PubMed  Google Scholar 

  • Rivera-Perez JA, Mager J, Magnuson T (2003) Dynamic morphogenetic events characterize the mouse visceral endoderm. Dev Biol 261:470–487

    Article  CAS  PubMed  Google Scholar 

  • de Robertis EM, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1:171–181

    Article  PubMed  Google Scholar 

  • Rodriguez-Esteban C, Capdevila J, Economides AN, Pascual J, Ortiz A, Izpisua Belmonte JC (1999) The novel Cer-like protein Caronte mediates the establishment of embryonic left-right asymmetry. Nature 401:243–251

    Article  PubMed  Google Scholar 

  • Sasaki H, Hogan BLM (1993) Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118:47–59

    CAS  PubMed  Google Scholar 

  • Schier AF, Shen MM (2000) Nodal signalling in vertebrate development. Nature 403:385–389

    Article  CAS  PubMed  Google Scholar 

  • Seher TC, Leptin M (2000) Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr Biol 10:623–629

    Article  CAS  PubMed  Google Scholar 

  • Shawlot W, Behringer RR (1995) Requirement for lim1 in head-organizer function. Nature 374:425–430

    Article  CAS  PubMed  Google Scholar 

  • Shawlot W, Deng JM, Behringer RR (1998) Expression of the mouse cerberus-related gene, Cerr1, suggests a role in anterior neural induction and somitogenesis. Proc Natl Acad Sci USA 95:6198–6203

    Article  CAS  PubMed  Google Scholar 

  • Skromne I, Stern CD (2001) Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development 128(15):2915–2927

    CAS  PubMed  Google Scholar 

  • Skromne I, Stern CD (2002) A hierarchy of gene expression accompanying induction of the primitive streak by Vg1 in the chick embryo. Mech Dev 114:115–118

    Article  CAS  PubMed  Google Scholar 

  • Stanley EG, Biben C, Allison J, Hartley L, Wicks IP, Campbell IK, McKinley M, Barnett L, Koentgen F, Robb L, Harvey RP (2000) Targeted insertion of a lacZ reporter gene into the mouse Cer1 locus reveals complex and dynamic expression during embryogenesis. Genesis 26:259–264

    Article  CAS  PubMed  Google Scholar 

  • Tam PPL, Gad JM (2004) Gastrulation in the mouse. In: Stern CD (ed) Gastrulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (in press)

  • Thomas PQ, Beddington RSP (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6:1487–1496

    Article  CAS  PubMed  Google Scholar 

  • Thomas PQ, Brown A, Beddington RSP (1998). Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–94

    CAS  PubMed  Google Scholar 

  • Varlet I, Collignon J, Robertson EJ (1997) nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124:1033–1044

    CAS  PubMed  Google Scholar 

  • Viebahn C (1995) Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anat 154:79–97

    CAS  PubMed  Google Scholar 

  • Viebahn C, Mayer B, Miething A (1995) Morphology of incipient mesoderm formation in the rabbit embryo: a light- and retrospective electron-microscopic study. Acta Anat 154:99–110

    CAS  PubMed  Google Scholar 

  • Viebahn C, Stortz C, Mitchell SM, Blum M (2002) Low proliferative and high migratory activity in the area of Brachyury expressing mesoderm progenitor cells in the gastrulating rabbit embryo. Development 129:2355–2365

    CAS  PubMed  Google Scholar 

  • Waddington CH (1933) Induction by the primitive streak and its derivatives in the chick. J Exp Biol 10:38–46

    Google Scholar 

  • Weinstein DC, Hemmati-Brivanlou A (1999) Neural induction. Annu Rev Cell Dev Biol 15:411–433

    Article  CAS  PubMed  Google Scholar 

  • Weisheit G, Mertz KD, Schilling K, Viebahn C (2002) An efficient in situ hybridization protocol for multiple tissues sections and probes on miniaturized slides. Dev Genes Evol 212:403–406

    Article  CAS  PubMed  Google Scholar 

  • Wodarz A, Hinz U, Engelbert M, Knust E (1995) Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82:67–76

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Glinka A, Delius H, Niehrs C (2000) Mutual antagonism between dickkopf1 and dickkopf2 regulates Wnt/beta- catenin signalling. Curr Biol 10:1611–1614

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Saijoh Y, Perea-Gomez A, Shawlot W, Behringer RR, Ang SL, Hamada H, Meno C (2004) Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428:387–392

    Article  CAS  PubMed  Google Scholar 

  • Yokouchi Y, Vogan KJ, Pearse RV, Tabin CJ (1999) Antagonistic signaling by Caronte, a novel Cerberus-related gene, establishes left-right asymmetric gene expression. Cell 98:573–583

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The technical help of Rosemarie Rappold, Elke Bernhard (both Halle), Heike Faust and Irmgard Weiß (both Göttingen) is gratefully acknowledged. Many thanks to Bernd Püschel for fruitful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (Vi 151/3-4 and Vi 151/6-2) and by the Deutsche Akademischer Austauschdienst (Procope programme D/9910412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Viebahn.

Additional information

Edited by D. Tautz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Idkowiak, J., Weisheit, G., Plitzner, J. et al. Hypoblast controls mesoderm generation and axial patterning in the gastrulating rabbit embryo. Dev Genes Evol 214, 591–605 (2004). https://doi.org/10.1007/s00427-004-0436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-004-0436-y

Keywords

Navigation