Skip to main content
Log in

The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells)

  • Review
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Major questions about stem cell systems include what type(s) of stem cells are involved (unipotent/totipotent/pluripotent/multipotent stem cells) and how the self-renewal and differentiation of stem cells are regulated. Sponges, the sister group of all other animals and probably the earliest branching multicellular lineage of extant animals, are thought to possess totipotent stem cells. This review introduces what is known about the stem cells in sponges based on histological studies and also on recent molecular biological studies that have started to reveal the molecular and cellular mechanisms of the stem cell system in sponges (mainly in demosponges). The currently proposed model of the stem cell system in demosponges is described, and the possible applicability of this model to other classes of sponges is discussed. Finally, a possible scenario of the evolution of stem cells, including how migrating stem cells arose in the urmetazoan (the last common ancestor of metazoans) and the evolutionary origin of germ line cells in the urbilaterian (the last common ancestor of bilaterians), are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamska M, Degnan BM, Green K, Zwafink C (2011) What sponges can tell us about the evolution of developmental processes. Zool (Jena) 114(1):1–10. doi:10.1016/j.zool.2010.10.003

    Article  Google Scholar 

  • Agata K, Nakajima E, Funayama N, Shibata N, Saito Y, Umesono Y (2006) Two different evolutionary origins of stem cell systems and their molecular basis. Semin Cell Dev Biol 17(4):503–509. doi:10.1016/j.semcdb.2006.05.004

    Article  PubMed  CAS  Google Scholar 

  • Alie A, Leclere L, Jager M, Dayraud C, Chang P, Le Guyader H, Queinnec E, Manuel M (2011) Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of “germline genes” with stemness. Dev Biol 350(1):183–197. doi:10.1016/j.ydbio.2010.10.019

    Article  PubMed  CAS  Google Scholar 

  • Anakina RP (1988) The early stages of fertilization of sponge Leucosolenia complicata Montagu (Calcispongia, Leucosoleniida) from the Barents Sea. Porifera and Cnidaria. Modern and perspecitive investigations. Zoological Institute USSR Academy of Science Press, Leningrad

    Google Scholar 

  • Anakina RP, Drozdov AL (2000) Characteristics of oogenesis in the Barents sea sponge Leucosolenia complicata. Tsitologiia 42(2):128–135

    PubMed  CAS  Google Scholar 

  • Anakina RP, Korotkova GP (1989) Spermatogenesis in Leucosolenia complicata Mont., Barents Sea sponge. Ontogenez 20:77–86

    Google Scholar 

  • Borojevic R (1966) Étude expérimentale de la différentiation des cellules de l'éponge au cours de son dévelopement. Dev Biol 14:130–153

    Article  PubMed  CAS  Google Scholar 

  • Borojevic R (1970) Différentiation cellulaire dans l'embryogénèse et la morphogénèse chez les spongiaires. Vol Sym.Zool. Soc. Lond. The Biology of the Porifera. Academic, London

    Google Scholar 

  • Bosch TCG (2008) Stem cells in immortal Hydra. In: Bosch TCG (ed) Stem cells from Hydra to man. Springer, Berlin, pp 37–58

  • Bosch TCG, Anton-Erxleben F, Hemmrich G, Khalturin K (2010) The Hydra polyp: nothing but an active stem cell community. Dev Growth Differ 52:15–25

    Google Scholar 

  • Boury-Esnault N, De Vos L, Donadey C, Vacelet J (1984) Comparative study of the choanosome of Porifera: I. The Homoscleromorpha. J Morphol 180:3–17

    Article  Google Scholar 

  • Boury-Esnault N, Efremova SM, Bézak C, BVacelet J (1999) Reproduction of a hexactinellid sponge: first description of gastrulation by cellular delamination in the Porifera. Invert Rep Dev 35:187–201

    Article  Google Scholar 

  • Brien P (1973) Les Démosponges, vol 1. Traite de Zoologie, Meison Cie Paris

    Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Connes R (1964) Contribution de l'étude de la prolifération par voie asexuée chez le Sycon. Bull Soc Zool France 89:188–195

    Google Scholar 

  • Connes R (1968) Etude histologique, cytologique et expérimentale de la régénération et de la reproduction asexuée chez Tethya lyncurium Lammark (=T. aurantium Pallas (Démosponges)). University, Montpelliar

    Google Scholar 

  • Connes R (1977) Contribution a l'Etude de la gemmulogenése chez la d'Eponge marine Suberites domuncula (Olivi) Nardo. Arch Zool ExpGén 118:391–407

    Google Scholar 

  • Connes R, Paris J, Artiges JM (1974) L’origine des cellules blastogenetiques chez Suberites domuncula Nardo. L’e´ quilibre choanocytes-archeocytes chez les spontiaires. Ann Sci Natur Zool (Paris) 16:111–118

    Google Scholar 

  • Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brummer F, Nickel M, Muller WE (1998) Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Dev 105(1–2):45–59

    Article  PubMed  CAS  Google Scholar 

  • Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N (2011) Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 357(1):73–82. doi:10.1016/j.ydbio.2011.06.003

    Article  PubMed  CAS  Google Scholar 

  • De Goeij JM, De Kluijver A, Van Duyl FC, Vacelet J, Wijffels RH, De Goeij AFPM, Cleutjens JPM, Schutte B (2009) Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. J Exp Biol 212(23):3892–3900. doi:10.1242/jeb.034561

    Article  PubMed  Google Scholar 

  • De Mulder K, Kuales G, Pfister D, Willems M, Egger B, Salvenmoser W, Thaler M, Gorny AK, Hrouda M, Borgonie G, Ladurner P (2009a) Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol 9:69. doi:10.1186/1471-213X-9-69

    Article  PubMed  Google Scholar 

  • De Mulder K, Pfister D, Kuales G, Egger B, Salvenmoser W, Willems M, Steger J, Fauster K, Micura R, Borgonie G, Ladurner P (2009b) Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms. Dev Biol 334(1):198–212. doi:10.1016/j.ydbio.2009.07.019

    Article  PubMed  Google Scholar 

  • De Sutter D, Buscema M (1977) Isolation of a highly pure archeocytes fraction from the fresh-water sponge Ephydatia fluviatilis. Wilhelm Roux’s Archices 183:149–153

    Article  Google Scholar 

  • De Sutter D, Van de Vyver G (1977) Aggregative properties of different cell types of the fresh-water sponge Ephydatia fluviatilis isolated on ficoll gradients. Roux’s Archives Dev Biol 183:151–161

    Article  Google Scholar 

  • Denker E, Manuel M, Leclere L, Le Guyader H, Rabet N (2008) Ordered progression of nematogenesis from stem cells through differentiation stages in the tentacle bulb of Clytia hemisphaerica (Hydrozoa, Cnidaria). Dev Biol 315(1):99–113

    Article  PubMed  CAS  Google Scholar 

  • Diaz JP (1979) Variations, differenciations et fonctions des categories cellulaire de la demosponge d’eau saumaitres, Suberites massa Nardo, au cours du cycle biologique annuel et dans des conditions experimentales. Univ. Sci. Tech, Languedoc

    Google Scholar 

  • Diaz JP, Connes R (1980) E´ tude ultrastructurale de la spermatogenése d’une démosponge. Biol Cell 38:225–230

    Google Scholar 

  • Ereskovsky A (2010) The comparative embryology of sponges. Springer, Netherlands

    Book  Google Scholar 

  • Extavour CG (2007) Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. Integr Comp Biol 47(5):770–785. doi:10.1093/icb/icm027

    Article  PubMed  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778

    Google Scholar 

  • Funayama N (2008) Stem cell system of sponge. In: Bosch TCG (ed) Stem cells from Hydra to man. Springer, Berlin, pp 17–35

  • Funayama N (2010) The stem cell system in demosponges: insights into the origin of somatic stem cells. Dev Growth Differ 52(1):1–14. doi:10.1111/j.1440-169X.2009.01162.x

    Article  PubMed  CAS  Google Scholar 

  • Funayama N, Nakatsukasa M, Hayashi T, Agata K (2005a) Isolation of the choanocyte in the freshwater sponge, Ephydatia fluviatilis and its lineage marker, Ef annexin. Dev Growth Differ 47(4):243–253

    Article  PubMed  CAS  Google Scholar 

  • Funayama N, Nakatsukasa M, Kuraku S, Takechi K, Dohi M, Iwabe N, Miyata T, Agata K (2005b) Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge Ephydatia fluviatilis. Zoolog Sci 22(10):1113–1122

    Article  PubMed  CAS  Google Scholar 

  • Funayama N, Nakatsukasa M, Mohri K, Masuda Y, Agata K (2010) Piwi expression in archeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges. Evol Dev 12(3):275–287

    Google Scholar 

  • Gaino E, Burlando B, Zunino L, Pansini M, Buffa P (1984) Origin of male gametes from choanocytes in Spongia officinalis (Porifera, Demosongiae). Int J Inv Rep Dev 7:83–93

    Article  Google Scholar 

  • Gaino E, Burlando B, Buffa P (1986a) Contribution to the study of egg development and derivation in Oscarella lobularis (Porifera, Demospongiae). Int J invert Rep Dev 9:59–69

    Article  Google Scholar 

  • Gaino E, Burlando B, Buffa P, Sará M (1986b) Ultrastructural study of spermatogenesis in Oscarella lobularis (Porifera, Demospongiae). Int J invert Rep Dev 10:297–305

    Article  Google Scholar 

  • Gaino E, Burlando B, Buffa P (1987) Ultrastructural study of oogenesis and fertilization in Sycon ciliatum (Porifera, Calcispongiae). Int J Inv Rep Dev 11:73–82

    Article  Google Scholar 

  • Gallissian MF (1981) Etude ultrastructurale de l'ovogenése chez quelques éponges calcaires (Porifera, Calcarea). Arch Zool Exp Gén 122:329–340

    Google Scholar 

  • Gilis M, Gosselin P, Dubois P, Willenz P (2011) Seasonal modifications and morphogenesis of the hypercalcified sponge Petrobiona massiliana (Calcarea, Calcaronea). Inv Biol 130:193–210

    Article  Google Scholar 

  • Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455(7217):1193–1197. doi:10.1038/nature07415

    Article  PubMed  CAS  Google Scholar 

  • Gurley KA, Sanchez Alvarado A (2008) Stem cells in animal models of regeneration. In: StemBook. Harvard Stem Cell Institute, Cambridge

  • Haeckel E (1874) Die Gastrae Theorie, die phylogenetische Classfication des Thierreichs und die Homologie der Keimblatter. Jiena Ztscher Natur 8:1–55

    Google Scholar 

  • Höhr D (1977) Differenzierungsvorgänge in der keimenden Gemmula von Ephydatia fluviatilis. Wilhelm Roux’s Arch 182:329–346

    Article  Google Scholar 

  • Ijima I (1901) Studies on the Hexactinelida, contribution I. (Euplectellidae). JColl Sci Imper Univ Tokyo 15:1–299

    Google Scholar 

  • Ishijima J, Iwabe N, Masuda Y, Watanabe Y, Matsuda Y (2008) Sponge cytogenetics—mitotic chromosomes of ten species of freshwater sponge. Zool Sci 25(5):480–486. doi:10.2108/zsj.25.480

    Article  PubMed  Google Scholar 

  • Ishizu H, Nagao A, Siomi H (2011) Gatekeepers for Piwi-piRNA complexes to enter the nucleus. Curr Opin Genet Dev 21(4):484–490

    Google Scholar 

  • Ivanova LV (1981) The life cycle of Halichondria panicea (Pallas). Morphogenesis in sponges. Leningrad University Press, Leningrad

    Google Scholar 

  • Juliano C, Wessel G (2010) Developmental biology. Versatile germline genes. Science 329(5992):640–641. doi:10.1126/science.1194037

    Google Scholar 

  • Juliano C, Wang J, Lin H (2011) Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet 45:447–469

    Google Scholar 

  • Khalturin K, Anton-Erxleben F, Milde S, Plotz C, Wittlieb J, Hemmrich G, Bosch TC (2007) Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Dev Biol 309(1):32–44

    Article  PubMed  CAS  Google Scholar 

  • King N (2004) The unicellular ancestry of animal development. Dev Cell 7(3):313–325. doi:10.1016/j.devcel.2004.08.010

    Article  PubMed  CAS  Google Scholar 

  • King N, Carroll SB (2001) A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci U S A 98(26):15032–15037. doi:10.1073/pnas.261477698

    Article  PubMed  CAS  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451(7180):783–788. doi:10.1038/nature06617

    Article  PubMed  CAS  Google Scholar 

  • King N, Young SL, Abedin M, Carr M, Leadbeater BS (2009) The choanoflagellates: heterotrophic nanoflagellates and sister group of the metazoa. Cold Spring Harbor Protoc 2009(2):pdb.emo116. doi:10.1101/pdb.emo116

  • Korotkova GP (1970) Regeneration and somatic embryogenesis in sponges. The biology of the Porifera. The biology of the Porifera, vol 25. Symposium of the Zoological Society, London

    Google Scholar 

  • Korotkova GP (1997) Regenaration in animals. Petersburg University Press, St. Petersburg

    Google Scholar 

  • Lanna E, Klautau M (2010) Oogenesis and spermatogenesis in Paraleucilla magna (Porifera, Calcarea). Zoomorphology 129(4):249–261. doi:10.1007/s00435-010-0117-5

    Article  Google Scholar 

  • Leclere L, Jager M, Barreau C, Chang P, Le Guyader H, Manuel M, Houliston E (2012) Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia. Dev Biol 364(2):236–248. doi:10.1016/j.ydbio.2012.01.018

    Article  PubMed  CAS  Google Scholar 

  • Ledger PW, Jones WC (1977) Spicule formation in the calcareous sponge Sycon ciliatum. Cell Tissue Res 181(4):553–567

    Article  PubMed  CAS  Google Scholar 

  • Lévi C (1970) Les celleles des éponges, vol 25. The biology of the Porifera. Symposium of Zoological Society, London

    Google Scholar 

  • Leys SP, Ereskovsky AV (2006) Embryogenesis and larval differentiation in sponges. Can J Zool 84(2):262–287. doi:10.1139/z05-170

    Article  Google Scholar 

  • Leys SP, Mackie GO, Reiswig HM (2007) The biology of glass sponges. Adv Mar Biol 52:1–145. doi:10.1016/S0065-2881(06)52001-2

    Article  PubMed  CAS  Google Scholar 

  • Mackie GO, Singla CL (1983) Studies on hexactinellid sponges. 1. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Philos T Roy Soc B 301(1107):365–400

    Article  Google Scholar 

  • Mochizuki K, Sano H, Kobayashi S, Nishimiya-Fujisawa C, Fujisawa T (2000) Expression and evolutionary conservation of nanos-related genes in Hydra. Dev Genes Evol 210(12):591–602

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T (2001) Universal occurrence of the vasa -related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211(6):299–308. doi:10.1007/s004270100156

    Article  PubMed  CAS  Google Scholar 

  • Mohri K, Nakatsukasa M, Masuda Y, Agata K, Funayama N (2008) Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev Dyn 237(10):3024–3039. doi:10.1002/dvdy.21708

    Article  PubMed  CAS  Google Scholar 

  • Molina MD, Salo E, Cebria F (2009) Expression pattern of the expanded noggin gene family in the planarian Schmidtea mediterranea. Gene Expr Patterns 9(4):246–253

    Article  PubMed  Google Scholar 

  • Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097):1068–1074. doi:10.1038/nature04956

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611. doi:10.1016/j.cell.2008.01.038

    Article  PubMed  CAS  Google Scholar 

  • Müller WE (2006) The stem cell concept in sponges (Porifera): metazoan traits. Semin Cell Dev Biol 17(4):481–491. doi:10.1016/j.semcdb.2006.05.006

    Article  PubMed  Google Scholar 

  • Okada Y (1928) On the development of a hexactinellid sponge, Farrea sollasii. J Fac Sci Impr Univ Tokyo 2:1–27

    Google Scholar 

  • Okamoto K, Nakatsukasa M, Alie A, Masuda Y, Agata K, Funayama N (2012) The active stem cell specific expression of sponge Musashi homolog EflMsiA suggests its involvement in maintaining the stem cell state. Mech Dev 129:24–37. doi:10.1016/j.mod.2012.03.001

    Article  PubMed  CAS  Google Scholar 

  • Palakodeti D, Smielewska M, Lu YC, Yeo GW, Graveley BR (2008) The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14(6):1174–1186. doi:10.1261/rna.1085008

    Article  PubMed  CAS  Google Scholar 

  • Paulus W, Weissenfels N (1986) The spermatogenesis of Ephydatia fluviatilis (Porifera). Zoomorphology 106:155–162

    Article  Google Scholar 

  • Pavans de Ceccatty M (1955) Le systéme nerveux des éponges calcaires et siliceuse. Univ, Paris

    Google Scholar 

  • Petersen CP, Reddien PW (2008) Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Sci (New York, NY) 319(5861):327–330

    Article  CAS  Google Scholar 

  • Philippe H, Roure B (2011) Difficult phylogenetic questions: more data, maybe; better methods, certainly. BMC Biol 9:91. doi:10.1186/1741-7007-9-91

    Article  PubMed  Google Scholar 

  • Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Queinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Worheide G, Manuel M (2009) Phylogenomics revives traditional views on deep animal relationships. Current Biol: CB 19(8):706–712. doi:10.1016/j.cub.2009.02.052

    Article  CAS  Google Scholar 

  • Pick KS, Philippe H, Schreiber F, Erpenbeck D, Jackson DJ, Wrede P, Wiens M, Alie A, Morgenstern B, Manuel M, Worheide G (2010) Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol Biol Evol 27(9):1983–1987. doi:10.1093/molbev/msq089

    Article  PubMed  CAS  Google Scholar 

  • Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sanchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Sci (New York, NY) 310(5752):1327–1330. doi:10.1126/science.1116110

    Article  CAS  Google Scholar 

  • Reddien PW, Bermange AL, Kicza AM, Sanchez Alvarado A (2007) BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 134(22):4043–4051

    Article  PubMed  CAS  Google Scholar 

  • Riesgo A, Maldonado M (2009) Ultrastructure of oogenesis of two oviparous demosponges: Axinella damicornis and Raspaciona aculeata (Porifera). Tissue Cell 41(1):51–65. doi:10.1016/j.tice.2008.07.004

    Article  PubMed  Google Scholar 

  • Riesgo A, Maldonado M, Durfort M (2007) Dynamics of gametogenesis, embryogenesis, and larval release in a Mediterranean homosclerophorid demosponge. Mar Fresh Res 58:398–417

    Article  Google Scholar 

  • Rossi L, Salvetti A, Lena A, Batistoni R, Deri P, Pugliesi C, Loreti E, Gremigni V (2006) DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev Genes Evol 216(6):335–346. doi:10.1007/s00427-006-0060-0

    Article  PubMed  CAS  Google Scholar 

  • Rouhana L, Shibata N, Nishimura O, Agata K (2010) Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance. Dev Biol 341(2):429–443. doi:10.1016/j.ydbio.2010.02.037

    Article  PubMed  CAS  Google Scholar 

  • Rouhana L, Vieira AP, Roberts-Galbraith RH, Newmark PA (2012) PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 139(6):1083–1094. doi:10.1242/dev.076182

    Article  PubMed  CAS  Google Scholar 

  • Saller U (1988) Oogenesis and larval development of Ephydatia fluviatilis (Porifera, Spongillidae). Zoomorph 108:23–28

    Article  Google Scholar 

  • Sará M (1955) La nutrizione dell'ovocita in Calcispongie omoceli. Ann Istit Mus Zool Univ Napoli 7:1–30

    Google Scholar 

  • Schulze FE (1875) Uber den bau und Entwicklung von Sycondra raphanus Haeckel. Z Wis Zoll 25:247–280

    Google Scholar 

  • Seipel K, Yanze N, Schmid V (2004) The germ line and somatic stem cell gene Cniwi in the jellyfish Podocoryne carnea. Int J Dev Biol 48(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, Agata K (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206(1):73–87. doi:10.1006/dbio.1998.9130

    Article  PubMed  CAS  Google Scholar 

  • Shibata N, Rouhana L, Agata K (2010) Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Dev Growth Differ 52(1):27–41. doi:10.1111/j.1440-169X.2009.01155.x

    Article  PubMed  CAS  Google Scholar 

  • Shibata N, Hayashi T, Fukumura R, Fujii J, Kudome-Takamatsu T, Nishimura O, Sano S, Son F, Suzuki N, Araki R, Abe M, Agata K (2012) Comprehensive gene expression analyses in pluripotent stem cells of a planarian, Dugesia japonica. Int J Dev Biol 56(1-2-3):93–102. doi:10.1387/ijdb.113434ns

    Article  PubMed  CAS  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, New York

  • Suga H, Sasaki G, Kuma K, Nishiyori H, Hirose N, Su ZH, Iwabe N, Miyata T (2008) Ancient divergence of animal protein tyrosine kinase genes demonstrated by a gene family tree including choanoflagellate genes. FEBS Lett 582(5):815–818. doi:10.1016/j.febslet.2008.02.002

    Article  PubMed  CAS  Google Scholar 

  • Sunanaga T, Inubushi H, Kawamura K (2010) Piwi-expressing hemoblasts serve as germline stem cells during postembryonic germ cell specification in colonial ascidian, Botryllus primigenus. Dev Growth Differ 52(7):603–614

    Google Scholar 

  • Takahashi T, Koizumi O, Hayakawa E, Minobe S, Suetsugu R, Kobayakawa Y, Bosch TC, David CN, Fujisawa T (2009) Further characterization of the PW peptide family that inhibits neuron differentiation in Hydra. Dev Genes Evol 219(3):119–129

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Watanabe Y (1984) Choanocyte differentiation and morphogensis of choanocyte chambers in the fresh-water sponge, Ephydatia fluviatilis, after reversal of developmental arrest caused by hydroxyurea. Zool Sci 1:561–570

    Google Scholar 

  • Tuzet O (1947) L'ovogenése et la fécondation de l'éponge calcaire Leucosolenia coriacea et de l'éponge siliceuse Reniera elegans. Arch Zool Exp Gén 85:127–148

    Google Scholar 

  • Tuzet O, Paris J (1963) Recherches sur la régénération de Sycon raphanus O.S. Vie Milieu 14:285–298

    Google Scholar 

  • Tuzet O, Garrone R, Pavans de Ceccatty M (1970a) Origine choancytaire de la lignée germinale mâle chez la démospongie Aplysilla rosea Schulze (Dendroceratide). C R AcadSc Paris 270:955–957

    Google Scholar 

  • Tuzet O, Garrone R, Pavans de Ceccatty M (1970b) Obserbations ultrastructurales sur la demosponge Aplysilla rosea Schulze (Dendroceratide): Une metaplasie exemplaire. AnnSciNature Zool Paris 12:27–50

    Google Scholar 

  • Umesono Y, Agata K (2009) Evolution and regeneration of the planarian central nervous system. Dev Growth Differ 51(3):185–195. doi:10.1111/j.1440-169X.2009.01099.x

    Article  PubMed  CAS  Google Scholar 

  • Vacelet J (1964) Étude monographique de l'éponge calcaire Pharétronide de Méditerranée Petrobiona massiliana Vacelet et Lévi. Les Pharétronides actuelles et fossiles. Rec Trav Stat Mar Endoume 34:1–125

    Google Scholar 

  • Vacelet J (1990) In: Rützler K (ed) New paerspectives in spohge boilogy. Storage cells of calcified relict sponges. Smithsonian Institution Press, Washington DC

  • Weissenfels N (1981) Bau und Function des Susswasserschwamms Ephydatia fluviatilis L. (Porifera) VIII. Die Entstehung und Entwicklung der Kragengeibelkammern und ihre Verbindung mit dem ausfuhrenden Kanalsystem. Zoomorphologie 98:35–45

    Article  Google Scholar 

  • Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5:245–258

    Article  Google Scholar 

  • Witte U, Barthel D (1994) Reproductive cycle and oogenesis of Halichondria panicea (Pallas) in Kiel Bight. Sponges in time and space. Balkema, Rotterdam

    Google Scholar 

  • Yamashita YM (2010) Cell adhesion in regulation of asymmetric stem cell division. Curr Opin Cell Biol 22(5):605–610. doi:10.1016/j.ceb.2010.07.009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Kiyokazu Agata for his support and discussions and Dr. Nicole Boury-Esnault and Dr. Maja Adamska for giving me their knowledge and for the discussions about stem cells and germ cells in homoscleromorphs and calcareous sponges. I also would like to thank Dr. Elizabeth Nakajima for the discussion, intensive reading, and correction of the English of this manuscript. I am also grateful to Dr. Alexandre Alie and Dr. Kazuko Okamoto for the helpful discussions. N.F. was supported in part by Grants-in-Aid for Scientific Research, a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Global COE Program A06 to Kyoto University, and Grant-in-Aid for JSPS Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Funayama.

Additional information

Communicated by Volker Hartenstein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funayama, N. The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Dev Genes Evol 223, 23–38 (2013). https://doi.org/10.1007/s00427-012-0417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-012-0417-5

Keywords

Navigation