Skip to main content
Log in

Size relationships of different body parts in the three dipteran species Drosophila melanogaster, Ceratitis capitata and Musca domestica

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 28 May 2016

Abstract

Body size is an integral feature of an organism that influences many aspects of life such as fecundity, life span and mating success. Size of individual organs and the entire body size represent quantitative traits with a large reaction norm, which are influenced by various environmental factors. In the model system Drosophila melanogaster, pupal size and adult traits, such as tibia and thorax length or wing size, accurately estimate the overall body size. However, it is unclear whether these traits can be used in other flies. Therefore, we studied changes in size of pupae and adult organs in response to different rearing temperatures and densities for D. melanogaster, Ceratitis capitata and Musca domestica. We confirm a clear sexual size dimorphism (SSD) for Drosophila and show that the SSD is less uniform in the other species. Moreover, the size response to changing growth conditions is sex dependent. Comparison of static and evolutionary allometries of the studied traits revealed that response to the same environmental variable is genotype specific but has similarities between species of the same order. We conclude that the value of adult traits as estimators of the absolute body size may differ among species and the use of a single trait may result in wrong assumptions. Therefore, we suggest using a body size coefficient computed from several individual measurements. Our data is of special importance for monitoring activities of natural populations of the three dipteran flies, since they are harmful species causing economical damage (Drosophila, Ceratitis) or transferring diseases (Musca).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves SM, Bélo M (2002) Morphometric variation in the housefly, Musca domestica (L.) with latitude. Genetica 115:243–251

    Article  PubMed  Google Scholar 

  • Anderson WW (1966) Genetic divergence in M. Vetukhiv’s experimental populations of Drosophila pseudoobscura. 3. Divergence in body size. Genet Res 7:255–266

    Article  Google Scholar 

  • Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Adv Ecol Res 3:1–58

    Article  Google Scholar 

  • Badyaev AV (2002) Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends Ecol Evol 17:369–378

    Article  Google Scholar 

  • Beadle GW, Tatum EL, Clancy CW (1938) Food level in relation to rate of development and eye pigmentation in Drosophila melanogaster. Biol Bull 75:447–462

    Article  Google Scholar 

  • Bergmann C (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Stud 3:595–708

    Google Scholar 

  • Biddulph TA, Harrison JF (2014) Oxygen modulates density effects on body size in Drosophila melanogaster. Society for Integrative and Comparative Biology, Austin

    Google Scholar 

  • Bookstein FL (1996) Biometrics, biomathematics and the morphometric synthesis. Bull Math Biol 58:313–365

    Article  CAS  PubMed  Google Scholar 

  • Bryan EH (1977) Morphometric adaptation of the housefly, Musca domestica L., in the United States. Evolution 31:580–596

    Article  Google Scholar 

  • Burk T, Webb JC (1983) Effect of male size on calling propensity, song parameters and mating success in Caribbean fruit flies, Anastrepha suspensa (Loew) (Diptera: Tephritidae). Ann Entomol Soc Am 76:678–682

    Article  Google Scholar 

  • Cavicchi S, Guerra D, Natali V, Pezzoli C, Giorgi G (1989) Temperature‐related divergence in experimental populations of Drosophila melanogaster. II. Correlation between fitness and body dimensions. J Evol Biol 2:235–251

    Article  Google Scholar 

  • Cheverud JM (1982) Relationships among ontogenetic, static, and evolutionary allometry. Am J Phys Anthropol 59:139–149

    Article  CAS  PubMed  Google Scholar 

  • Churchill-Stanland C, Stanland R, Wong TTY, Tanaka N, McInnis DO, Dowell R (1986) Size as a factor in the mating propensity of Mediterranean fruit flies, Ceratitis capitata (Diptera: Tephritidae), in the laboratory. J Econ Entomol 79:614–618

    Article  Google Scholar 

  • Cohen S (1993) The development of Drosophila melanogaster. CSHLP, New York, pp 747–841

    Google Scholar 

  • Cowley DE, Atchley WR (1990) Development and quantitative genetics of correlation structure among body parts of Drosophila melanogaster. Am Nat 135:242–268

    Article  Google Scholar 

  • David JR, Clavel M-F (1967) Influence de la temperature subie au cours du development sur divers characters biometriques des adultes de Drosophila melanogaster Meigen. J Insect Physiol 13:717–729

    Article  CAS  PubMed  Google Scholar 

  • de Moed GH, de Jong G, Schatloo W (1997) The phenotypic plasticity of wing size in Drosophila melanogaster: the cellular basis of its genetic variation. Heredity 79:260–267

    Article  PubMed  Google Scholar 

  • Demerec M (1950) Biology of drosophila. Wiley, New York

    Google Scholar 

  • Diamond SE, Kingsolver JG (2010) Environmental dependence of thermal reaction norms: host plant quality can reverse the temperature-size rule. Am Nat 175:1–10

    Article  PubMed  Google Scholar 

  • DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MM (2009) The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc Natl Acad Sci U S A 106:20853–20858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar BA (2006) How flies get their size: genetics meets physiology. Nat Rev Genet 7:907–916

    Article  CAS  PubMed  Google Scholar 

  • French V, Feast M, Partridge L (1998) Body size and cell size in Drosophila: the developmental response to temperature. J Insect Physiol 44:1081–1089

    Article  CAS  PubMed  Google Scholar 

  • Gleiser RM, Urrutia J, Gorla DE (2000) Body size variation of the floodwater mosquito Aedes albifasciatus in Central Argentina. Med Vet Entomol 14:38–43

    Article  CAS  PubMed  Google Scholar 

  • Gokhale RH, Shingleton AW (2015) Size control: the developmental physiology of body and organ size regulation. Wiley Interdiscip Rev Dev Biol 4:335–356

    Article  CAS  PubMed  Google Scholar 

  • Head G (1995) Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (class Aranea). Evolution 49:776–781

    Article  Google Scholar 

  • Hewitt CG (1914) The house-fly, Musca domestica Linn.: its structure, habits, development, relation to disease and control. University Press, Cambridge

    Book  Google Scholar 

  • Huxley JS (1924) Constant differential growth-ratios and their significance. Nature 114:895–896

    Article  Google Scholar 

  • Huxley JS, Tessier G (1936) Terminology of relative growth. Nature 137:780–781

    Article  Google Scholar 

  • Kacmarczyk T, Craddock EM (2000) Cell size is a factor in body size variation among Hawaiian and nonHawaiian species of Drosophila. Dros Inf Serv 83:144–148

    Google Scholar 

  • Kammenga JE, Doroszuk A, Riksen JA, Hazendonk E, Spiridon L, Petrescu AJ, Tijsterman M, Plasterk RH, Bakker J (2007) A Caenorhabditis elegans wild-type defies the temperature-size rule owing to a single nucleotide polymorphism in tra-3. PLoS Genet 3, e34. doi:10.1371/journal.pgen.0030034

    Article  PubMed  PubMed Central  Google Scholar 

  • Khazaeli AA, Van Voorhies W, Curtsinger JW (2005) The relationship between life span and adult body size is highly strain-specific in Drosophila melanogaster. Exp Gerontol 40:77–85

    Article  Google Scholar 

  • Kingsolver JG, Huey RB (2008) Size, temperature and fitness: three rules. Evol Ecol Res 8:703–715

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Koyama T, Rodrigues MA, Athanasiadis A, Shingleton AW, Mirth CK (2014) Nutritional control of body size through FoxO-ultraspiracle mediated ecdysone biosynthesis. Elife 3:1–20. doi:10.7554/eLife.03091

  • Lutz F (1948) Field book of insects. G. P. Putnam’s Sons, New York

    Google Scholar 

  • Madhavan MM, Schneiderman HA (1977) Histological analysis of dynamics of growth of imaginal discs and histoblast nests during larval development of Drosophila melanogaster. Roux’s Arch Dev Biol 183:269–305

    Article  Google Scholar 

  • Miller RS, Thomas JL (1958) The effect of larval crowding and body size on the longevity of adult Drosophila melanogaster. Ecology 39:118–125

    Article  Google Scholar 

  • Mirth CK, Shingleton AW (2012) Integrating body and organ size in Drosophila: recent advances and outstanding problems. Front Endocrinol 3:49. doi:10.3389/fendo.2012.00049

    Article  Google Scholar 

  • Mirth CK, Tang HY, Makohon-Moore SC, Salhadar S, Gokhale RH, Warner RD, Koyama T, Riddiford LM, Shingleton AW (2014) Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc Natl Acad Sci U S A 111:7018–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Campos C, Martínez-Ferrer MT, Campos JM, Fibla JM, Alcaide J, Bargues L, Marzal C, Garcia-Marí F (2011) The influence of host fruit and temperature on the body size of adult Ceratitis capitata (Diptera: Tephritidae) under laboratory and field conditions. Environ Entomol 40:931–938

    Article  CAS  PubMed  Google Scholar 

  • Nunney L, Cheung W (1997) The effect of temperature on body size and fecundity in female drosophila melanogaster: evidence for adaptive plasticity. Evolution 51:1529–1535

    Article  Google Scholar 

  • Oliveira MM, Shingleton AW, Mirth CK (2014) Coordination of wing and whole-body development at developmental milestones ensures robustness against environmental and physiological perturbations. PLoS Genet 10, e1004408. doi:10.1371/journal.pgen.1004408

    Article  PubMed  PubMed Central  Google Scholar 

  • Pantalouris EM (1957) Size response of developing Drosophila to temperature change. J Genet 55:507–510

    Article  Google Scholar 

  • Partridge L, Ewing A, Chandler A (1987) Male size and mating success in Drosophila melanogaster: the role of male and female behaviour. Anim Behav 35:555–562

    Article  Google Scholar 

  • Peck LS, Maddrell SHP (2005) Limitation of size by hypoxia in the fruit fly Drosophila melanogaster. J Exp Zool A Comp Exp Biol 303A:968–975

    Article  Google Scholar 

  • Pitnick S, Markow TA (1995) Delayed male maturity is a cost of producing large sperm in Drosophila. Proc Natl Acad Sci USA 92:10614–10618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, http://www.R-project.org

  • Ray C (1960) The application of Bergmann’s and Allen’s rules to the poikilotherms. J Morphol 106:85–108

    Article  CAS  PubMed  Google Scholar 

  • Robinson SJW, Partridge L (2001) Temperature and clinal variation in larval growth efficiency in Drosophila melanogaster. J Evol Biol 14:14–21

    Article  Google Scholar 

  • Rohlf FJ (2004) tpsUtil, File utility program, version 1.54. Department of Ecology and Evolution, State University of New York at Stony Brook

  • Rohlf FJ (2010) tpsDig, Digitize landmarks and outlines, version 2.17. Department of Ecology and Evolution, State University of New York at Stony Brook

  • Santos M, Fowler K, Partridge L (1994) Gene-environment interaction for body size and larval density in Drosophila melanogaster: an investigation of effects on development time, thorax length and adult sex ratio. Heredity 72:515–521

    Article  PubMed  Google Scholar 

  • Scheiner SM, Lyman RF (1989) The genetics of phenotypic plasticity. Heritability. J Evol Biol 2:95–107

    Article  Google Scholar 

  • Scheiner SM, Lyman RF (1991) The genetics of phenotypic plasticity II. Response to selection. J Evol Biol 3:23–50

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1999) Phentypic evolution—a reaction norm perspective. Heredity 82:344–344

    Google Scholar 

  • Shine R (1979) Sexual selection and sexual dimorphism in the Amphibia. Copeia 2:297–306

    Article  Google Scholar 

  • Shine R (1994) Sexual size dimorphism in snakes revisited. Copeia 2:326–346

    Article  Google Scholar 

  • Shingleton AW, Mirth CK, Bates PW (2008) Developmental model of static allometry in holometabolous insects. Proc R Soc B 275:1875–1885

    Article  PubMed  PubMed Central  Google Scholar 

  • Shingleton AW, Estep CM, Driscoll MV, Dworkin I (2009) Many ways to be small: different environmental regulators of size generate distinct scaling relationships in Drosophila melanogaster. Proc R Soc B 276:2625–2633

    Article  PubMed  PubMed Central  Google Scholar 

  • StatSoft, Inc (1997) Electronic statistics textbook. Tulsa, OK: StatSoft. WEB: http://www.statsoft.com/textbook/stathome.html

  • Stillwell RC, Blanckenhorn WU, Teder T, Davidowitz G, Fox CW (2010) Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annu Rev Entomol 55:227–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stillwell RC, Dworkin I, Shingleton AW, Frankino WA (2011) Experimental manipulation of body size to estimate morphological scaling relationships in drosophila. J Vis Exp 56:3162. doi:10.3791/3162

    PubMed  Google Scholar 

  • Teder T, Tammaru T (2005) Sexual size dimorphism within species increases with body size in insects. Oikos 108:321–334

    Article  Google Scholar 

Download references

Acknowledgments

We thank Y. Wu and L. Beukeboom for providing the Musca flies. This work has been funded by a German Academic Exchange Service (DAAD) fellowship #A/12/86783 to NS, the Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) and the Volkswagen Foundation (project number: 85 983; to NP). Special thanks to the two anonymous reviewers for their helpful comments on the previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ernst A. Wimmer or Nico Posnien.

Additional information

Communicated by Angelika Stollewerk

This article is part of the Special Issue “Size and Shape: Integration of morphometrics, mathematical modelling, developmental and evolutionary biology”, Guest Editors: Nico Posnien—Nikola-Michael Prpic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siomava, N., Wimmer, E.A. & Posnien, N. Size relationships of different body parts in the three dipteran species Drosophila melanogaster, Ceratitis capitata and Musca domestica . Dev Genes Evol 226, 245–256 (2016). https://doi.org/10.1007/s00427-016-0543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-016-0543-6

Keywords

Navigation