Skip to main content
Log in

The flexible stem hypothesis: evidence from genetic data

  • Review
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Phenotypic plasticity, the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions, is widely observed in the wild. It is believed to facilitate evolution and, under the “flexible stem hypothesis”, it is thought that an ancestral plastic species can be at the origin of sister lineages with divergent phenotypes fixed by genetic assimilation of alternative morphs. We review here the genetic mechanisms underlying such phenomenon. We show several examples in which the same gene shows transcriptional plasticity in response to environmental factors and divergence of expression within or between species. Thus, the same gene is involved both in the plasticity of a trait and in the evolution of that trait. In a few cases, it can be traced down to cis-regulatory variation in this gene and, in one case, in the very same regulatory sequence whose activity is modulated by the environment. These data are compatible with the “flexible stem hypothesis” and also suggest that the evolution of the plasticity of a trait and the evolution of the trait are not completely uncoupled as they often involve the same locus. Furthermore, the “flexible stem hypothesis” implies that it is possible to canalize initially plastic phenotypes. Several studies have shown that it was possible through modification of chromatin regulation or hormonal signalling/response. Further studies of phenotypic plasticity in an evolutionary framework are needed to see how much the findings described in this review can be generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azevedo RBR, French V, Partridge L (2002) Temperature modulates epidermal cell size in Drosophila melanogaster. J Insect Physiol 48:231–237

    Article  CAS  PubMed  Google Scholar 

  • Badyaev AV, Foresman KR (2000) Extreme environmental change and evolution: stress-induced morphological variation is strongly concordant with patterns of evolutionary divergence in shrew mandibles. Proc Biol Sci 267:371–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastide H, Betancourt A, Nolte V et al (2013) A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster. PLoS Genet 9:e1003534. doi:10.1371/journal.pgen.1003534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beldade P, Brakefield PM, Long AD (2002) Contribution of distal-less to quantitative variation in butterfly eyespots. Nature 415:315–318. doi:10.1038/415315a

    Article  CAS  PubMed  Google Scholar 

  • Bento G, Ogawa A, Sommer RJ (2010) Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 466:494–497. doi:10.1038/nature09164

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. In: Thoday EWC and JM (ed) advances in genetics. Academic Press, pp 115–155

  • Brakefield PM, Gates J, Keys D et al (1996) Development, plasticity and evolution of butterfly eyespot patterns. Nature 384:236–242

    Article  CAS  PubMed  Google Scholar 

  • Cheng LY, Bailey AP, Leevers SJ et al (2011) Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell 146:435–447. doi:10.1016/j.cell.2011.06.040

    Article  CAS  PubMed  Google Scholar 

  • Dembeck LM, Huang W, Magwire MM et al (2015) Genetic architecture of abdominal pigmentation in Drosophila melanogaster. PLoS Genet 11:e1005163. doi:10.1371/journal.pgen.1005163

    Article  PubMed  PubMed Central  Google Scholar 

  • Dworkin I (2005) Towards a genetic architecture of cryptic genetic variation and genetic assimilation: the contribution of K. G Bateman J Genet 84:223–226

    Article  Google Scholar 

  • Endler L, Betancourt AJ, Nolte V, Schlötterer C (2015) Reconciling differences in pool-GWAS between populations: a case study of female abdominal pigmentation in Drosophila melanogaster. Genetics. doi:10.1534/genetics.115.183376

  • Fedorka KM, Copeland EK, Winterhalter WE (2013) Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects. J Exp Biol 216:4005–4010. doi:10.1242/jeb.091538

    Article  PubMed  Google Scholar 

  • Ghalambor CK, Hoke KL, Ruell EW et al (2015) Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525:372–375. doi:10.1038/nature15256

    Article  CAS  PubMed  Google Scholar 

  • Gibert J-M, Mouchel-Vielh E, De Castro S, Peronnet F (2016) Phenotypic plasticity through transcriptional regulation of the evolutionary hotspot gene tan in Drosophila melanogaster. PLoS Genet 12:e1006218. doi:10.1371/journal.pgen.1006218

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibert J-M, Mouchel-Vielh E, Peronnet F (2017) Modulation of yellow expression contributes to thermal plasticity of female abdominal pigmentation in Drosophila melanogaster. Sci Rep 7:43370. doi:10.1038/srep43370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibert P, Moreteau B, David JR (2000) Developmental constraints on an adaptive plasticity: reaction norms of pigmentation in adult segments of Drosophila melanogaster. Evol Dev 2:249–260

    Article  CAS  PubMed  Google Scholar 

  • Gibson G, Hogness DS (1996) Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 271:200–203

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF (2001) Ecological developmental biology: developmental biology meets the real world. Dev Biol 233:1–12. doi:10.1006/dbio.2001.0210

    Article  CAS  PubMed  Google Scholar 

  • James AC, Azevedo RB, Partridge L (1995) Cellular basis and developmental timing in a size cline of Drosophila melanogaster. Genetics 140:659–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong S, Rebeiz M, Andolfatto P et al (2008) The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132:783–793

    Article  CAS  PubMed  Google Scholar 

  • Johannsen W (1911) The genotype conception of heredity. Am Nat XLV:129–159

  • Kiontke K, Fitch DHA (2010) Phenotypic plasticity: different teeth for different feasts. Curr Biol CB 20:R710–R712. doi:10.1016/j.cub.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  CAS  PubMed  Google Scholar 

  • Kutch IC, Sevgili H, Wittman T, Fedorka KM (2014) Thermoregulatory strategy may shape immune investment in Drosophila melanogaster. J Exp Biol 217:3664–3669. doi:10.1242/jeb.106294

    Article  PubMed  Google Scholar 

  • Laland K, Uller T, Feldman M et al (2014) Does evolutionary theory need a rethink? Nature 514:161–164. doi:10.1038/514161a

    Article  CAS  PubMed  Google Scholar 

  • Laland KN, Uller T, Feldman MW et al (2015) The extended evolutionary synthesis: its structure, assumptions and predictions. Proc Biol Sci 282:20151019. doi:10.1098/rspb.2015.1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung A, Parks BW, Du J et al (2014) Open chromatin profiling in mice livers reveals unique chromatin variations induced by high fat diet. J Biol Chem. doi:10.1074/jbc.M114.581439

  • Martin A, Orgogozo V (2013) The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67:1235–1250. doi:10.1111/evo.12081

    CAS  PubMed  Google Scholar 

  • Michie LJ, Mallard F, Majerus ME, Jiggins FM (2010) Melanic through nature or nurture: genetic polymorphism and phenotypic plasticity in Harmonia axyridis. J Evol Biol 23:1699–1707. doi:10.1111/j.1420-9101.2010.02043.x

    Article  CAS  PubMed  Google Scholar 

  • Moczek AP, Sultan S, Foster S et al (2011) The role of developmental plasticity in evolutionary innovation. Proc Biol Sci. doi:10.1098/rspb.2011.0971

  • Monteiro A, Chen B, Ramos DM et al (2013) Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies. J Exp Zoolog B Mol Dev Evol 320:321–331. doi:10.1002/jez.b.22503

    Article  CAS  Google Scholar 

  • Muschick M, Barluenga M, Salzburger W, Meyer A (2011) Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol Biol 11:116. doi:10.1186/1471-2148-11-116

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, et al (2010) Phenotypic plasticity’s impacts on diversification and speciation

  • Pigliucci M (2001) Phenotypic plasticity. Beyond Nature and Nurture, Baltimore and London

    Google Scholar 

  • Prud’homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution. Proc Natl Acad Sci U A 104(Suppl 1):8605–8612

    Article  Google Scholar 

  • Ragsdale EJ, Müller MR, Rödelsperger C, Sommer RJ (2013) A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155:922–933. doi:10.1016/j.cell.2013.09.054

    Article  CAS  PubMed  Google Scholar 

  • Rajpurohit S, Richardson R, Dean J et al (2016) Pigmentation and fitness trade-offs through the lens of artificial selection. Biol Lett. doi:10.1098/rsbl.2016.0625

  • Scheiner SM (1993) Plasticity as a selectable trait: reply to via. Am Nat 142:371–373

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1993) Control of phenotypic plasticity via regulatory genes. Am Nat 142:366–370. doi:10.1086/285543

    Article  CAS  PubMed  Google Scholar 

  • Schmalhausen II (1949) Factors of evolution, the theory of stabilizing selection. The University of Chicago Press, Chicago and London

    Google Scholar 

  • Schneider RF, Meyer A (2017) How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Mol Ecol 26:330–350. doi:10.1111/mec.13880

    Article  PubMed  Google Scholar 

  • Schwander T, Leimar O (2011) Genes as leaders and followers in evolution. Trends Ecol Evol 26:143–151. doi:10.1016/j.tree.2010.12.010

    Article  PubMed  Google Scholar 

  • Serobyan V, Xiao H, Namdeo S et al (2016) Chromatin remodelling and antisense-mediated upregulation of the developmental switch gene eud-1 control predatory feeding plasticity. Nat Commun 7:12337. doi:10.1038/ncomms12337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirai LT, Saenko SV, Keller RA et al (2012) Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait. BMC Evol Biol 12:21. doi:10.1186/1471-2148-12-21

    Article  PubMed  PubMed Central  Google Scholar 

  • Sicard A, Thamm A, Marona C et al (2014) Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene. Curr Biol 24:1880–1886. doi:10.1016/j.cub.2014.06.061

    Article  CAS  PubMed  Google Scholar 

  • Simola DF, Graham RJ, Brady CM et al (2016) Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science. doi:10.1126/science.aac6633

  • Susoy V, Ragsdale EJ, Kanzaki N, Sommer RJ (2015) Rapid diversification associated with a macroevolutionary pulse of developmental plasticity. elife. doi:10.7554/eLife.05463

  • Suzuki Y, Nijhout HF (2006) Evolution of a polyphenism by genetic accommodation. Science 311:650–652

    Article  CAS  PubMed  Google Scholar 

  • Tang HY, Smith-Caldas MS, Driscoll MV et al (2011) FOXO regulates organ-specific phenotypic plasticity in drosophila. PLoS Genet 7:e1002373. doi:10.1371/journal.pgen.1002373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • True JR, Yeh SD, Hovemann BT et al (2005) Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genet 1:e63

    Article  PubMed  PubMed Central  Google Scholar 

  • Via S (1993) Adaptive phenotypic plasticity: target or by-product of selection in a variable environment? Am Nat 142:352–365. doi:10.1086/285542

    Article  CAS  PubMed  Google Scholar 

  • Via S, Gomulkievicz R, de Jong G et al (1995) Adaptive phenotypic plasticity: consensus and controversy. TREE 10:212–217

    CAS  PubMed  Google Scholar 

  • Waddington CH (1952) Selection of the genetic basis for an acquired character. Nature 169:278

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1956) Genetic assimilation of the Bithorax phenotype. Evolution 10:1–13. doi:10.2307/2406091

    Article  Google Scholar 

  • Waddington CH (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183:1654–1655

    Article  CAS  PubMed  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U A 102(Suppl 1):6543–6549

    Article  CAS  Google Scholar 

  • Whitehead A, Roach JL, Zhang S, Galvez F (2011) Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc Natl Acad Sci U A 108:6193–6198. doi:10.1073/pnas.1017542108

    Article  CAS  Google Scholar 

  • Whitehead A, Roach JL, Zhang S, Galvez F (2012) Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus Heteroclitus) gill. J Exp Biol 215:1293–1305. doi:10.1242/jeb.062075

    Article  PubMed  Google Scholar 

  • Wittkopp PJ, Beldade P (2009) Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol 20:65–71

    Article  CAS  PubMed  Google Scholar 

  • Wittkopp PJ, Stewart EE, Arnold LL et al (2009) Intraspecific polymorphism to interspecific divergence: genetics of pigmentation in Drosophila. Science 326:540–544. doi:10.1126/science.1176980

    Article  CAS  PubMed  Google Scholar 

  • Wittkopp PJ, Williams BL, Selegue JE, Carroll SB (2003) Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes. Proc Natl Acad Sci U A 100:1808–1813

    Article  CAS  Google Scholar 

  • Woltereck R (1909) Weitere experimentelle unters¨uchungen ¨uber artver¨anderung, speziell ¨uber das wesen quantitativer artunterschiede bei daphniden. Verhandlungen Dtsch Zooligischen Ges:110–172

  • Wund MA, Baker JA, Clancy B et al (2008) A test of the “flexible stem” model of evolution: ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am Nat 172:449–462. doi:10.1086/590966

    Article  PubMed  Google Scholar 

  • Yassin A, Bastide H, Chung H et al (2016) Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta. Nat Commun 7:10400. doi:10.1038/ncomms10400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Sophie Gournet for the drawings illustrating this review. I thank Frédérique Peronnet, Emmanuèle Mouchel-Vielh and Virginie Courtier-Orgogozo for critical reading of the manuscript and stimulating discussions. I thank the two anonymous reviewers for comments that significantly enriched the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Gibert.

Additional information

Communicated by Ralf Sommer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibert, JM. The flexible stem hypothesis: evidence from genetic data. Dev Genes Evol 227, 297–307 (2017). https://doi.org/10.1007/s00427-017-0589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-017-0589-0

Keywords

Navigation